Jay W Ponder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/215587/publications.pdf

Version: 2024-02-01

62 papers 12,246 citations

38 h-index 61 g-index

64 all docs 64
docs citations

64 times ranked 8782 citing authors

#	Article	IF	CITATIONS
1	Force Fields for Protein Simulations. Advances in Protein Chemistry, 2003, 66, 27-85.	4.4	1,560
2	Tertiary templates for proteins. Journal of Molecular Biology, 1987, 193, 775-791.	4.2	1,496
3	Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation. Journal of Physical Chemistry B, 2003, 107, 5933-5947.	2.6	1,270
4	Current Status of the AMOEBA Polarizable Force Field. Journal of Physical Chemistry B, 2010, 114, 2549-2564.	2.6	1,093
5	An efficient newton-like method for molecular mechanics energy minimization of large molecules. Journal of Computational Chemistry, 1987, 8, 1016-1024.	3.3	854
6	Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. Journal of Computational Chemistry, 2002, 23, 1497-1506.	3.3	545
7	Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins. Journal of Chemical Theory and Computation, 2013, 9, 4046-4063.	5.3	524
8	Ion Solvation Thermodynamics from Simulation with a Polarizable Force Field. Journal of the American Chemical Society, 2003, 125, 15671-15682.	13.7	474
9	Tinker 8: Software Tools for Molecular Design. Journal of Chemical Theory and Computation, 2018, 14, 5273-5289.	5.3	403
10	Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules. Journal of Chemical Theory and Computation, 2011, 7, 3143-3161.	5.3	385
11	Systematic Improvement of a Classical Molecular Model of Water. Journal of Physical Chemistry B, 2013, 117, 9956-9972.	2.6	279
12	Analysis and Application of Potential Energy Smoothing and Search Methods for Global Optimization. Journal of Physical Chemistry B, 1998, 102, 9725-9742.	2.6	239
13	Accurate modeling of the intramolecular electrostatic energy of proteins. Journal of Computational Chemistry, 1995, 16, 791-816.	3.3	228
14	Temperature and Pressure Dependence of the AMOEBA Water Model. Journal of Physical Chemistry B, 2004, 108, 13427-13437.	2.6	191
15	Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chemical Science, 2018, 9, 956-972.	7.4	190
16	Algorithms for calculating excluded volume and its derivatives as a function of molecular conformation and their use in energy minimization. Journal of Computational Chemistry, 1991, 12, 402-409.	3.3	183
17	Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model. Journal of Physical Chemistry B, 2015, 119, 9423-9437.	2.6	183
18	AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. Journal of Chemical Theory and Computation, 2018, 14, 2084-2108.	5.3	178

#	Article	IF	CITATIONS
19	The NMR Solution Structure of Intestinal Fatty Acid-binding Protein Complexed with Palmitate: Application of a Novel Distance Geometry Algorithm. Journal of Molecular Biology, 1996, 264, 585-602.	4.2	159
20	General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field. Journal of Chemical Theory and Computation, 2015, 11, 2609-2618.	5.3	93
21	Ab Initio fold prediction of small helical proteins using distance geometry and knowledge-based scoring functions 1 1Edited by F. Cohen. Journal of Molecular Biology, 1999, 290, 267-281.	4.2	89
22	Tinkerâ€OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs. Journal of Computational Chemistry, 2017, 38, 2047-2055.	3.3	89
23	Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions. Journal of Computational Chemistry, 1998, 19, 548-573.	3.3	83
24	Force field modeling of conformational energies: Importance of multipole moments and intramolecular polarization. International Journal of Quantum Chemistry, 2007, 107, 1390-1395.	2.0	81
25	Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. Journal of Chemical Physics, 2007, 126, 124114.	3.0	79
26	Advanced Potential Energy Surfaces for Molecular Simulation. Journal of Physical Chemistry B, 2016, 120, 9811-9832.	2.6	77
27	Multipole electrostatics in hydration free energy calculations. Journal of Computational Chemistry, 2011, 32, 967-977.	3.3	69
28	Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum. Journal of Chemical Theory and Computation, 2007, 3, 2083-2097.	5.3	66
29	An optimized charge penetration model for use with the AMOEBA force field. Physical Chemistry Chemical Physics, 2017, 19, 276-291.	2.8	65
30	Stereochemistry of the hygrolidins. Tetrahedron Letters, 1984, 25, 4325-4328.	1.4	59
31	A potential smoothing algorithm accurately predicts transmembrane helix packing. Nature Structural Biology, 1999, 6, 50-55.	9.7	57
32	Calculation of the reaction field due to off-center point multipoles. Journal of Chemical Physics, 1997, 107, 481-492.	3.0	55
33	Classical Pauli repulsion: An anisotropic, atomic multipole model. Journal of Chemical Physics, 2019, 150, 084104.	3.0	51
34	The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 286, 1179-1195.	4.2	46
35	TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field. Journal of Chemical Physics, 2016, 145, 124106.	3.0	46
36	Binding of retinol induces changes in rat cellular retinol-binding protein II conformation and backbone dynamics. Journal of Molecular Biology, 2000, 300, 619-632.	4.2	44

#	Article	lF	CITATIONS
37	Calculating binding free energies of host–guest systems using the AMOEBA polarizable force field. Physical Chemistry Chemical Physics, 2016, 18, 30261-30269.	2.8	44
38	Accuracy of side-chain prediction upon near-native protein backbones generated by ab initio folding methods., 1998, 33, 204-217.		42
39	MSCALE: A General Utility for Multiscale Modeling. Journal of Chemical Theory and Computation, 2011, 7, 1208-1219.	5.3	41
40	Tinker-HP: Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU Systems. Journal of Chemical Theory and Computation, 2021, 17, 2034-2053.	5.3	40
41	The stereochemistry and biosynthesis of hybridalactone, an eicosanoid from. Tetrahedron Letters, 1984, 25, 1015-1018.	1.4	36
42	A valence bond model for aqueous $Cu(II)$ and $Zn(II)$ ions in the AMOEBA polarizable force field. Journal of Computational Chemistry, 2013, 34, 739-749.	3.3	34
43	Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations. Journal of Chemical Theory and Computation, 2017, 13, 180-190.	5.3	34
44	Exploring the similarities between potential smoothing and simulated annealing. Journal of Computational Chemistry, 2000, 21, 531-552.	3.3	30
45	Molecular Dynamics of \hat{l}^2 -Hairpin Models of Epigenetic Recognition Motifs. Journal of the American Chemical Society, 2012, 134, 15970-15978.	13.7	29
46	An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field. Journal of Chemical Theory and Computation, 2014, 10, 298-311.	5.3	28
47	An empirical extrapolation scheme for efficient treatment of induced dipoles. Journal of Chemical Physics, 2016, 145, 164101.	3.0	27
48	Distance geometry generates nativeâ€like folds for small helical proteins using the consensus distances of predicted protein structures. Protein Science, 1998, 7, 1998-2003.	7.6	26
49	Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate. Journal of Chemical Theory and Computation, 2015, 11, 5326-5339.	5.3	26
50	Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general shortâ€range penetration correction up to quadrupoles. Journal of Computational Chemistry, 2016, 37, 494-506.	3.3	26
51	Absolute binding free energies for the SAMPL6 cucurbit[8]uril host–guest challenge via the AMOEBA polarizable force field. Journal of Computer-Aided Molecular Design, 2018, 32, 1087-1095.	2.9	26
52	Polarizable Water Potential Derived from a Model Electron Density. Journal of Chemical Theory and Computation, 2021, 17, 7056-7084.	5.3	26
53	High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics. PLoS ONE, 2015, 10, e0123146.	2.5	25
54	AMOEBA binding free energies for the SAMPL7 TrimerTrip host–guest challenge. Journal of Computer-Aided Molecular Design, 2021, 35, 79-93.	2.9	21

#	Article	IF	CITATION
55	Computationally driven discovery of SARS-CoV-2 M ^{pro} inhibitors: from design to experimental validation. Chemical Science, 2022, 13, 3674-3687.	7.4	21
56	A physically grounded damped dispersion model with particle mesh Ewald summation. Journal of Chemical Physics, 2018, 149, 084115.	3.0	18
57	Crystallization and Initial X-ray Crystallographic Characterization of Recombinant Bovine Inositol Polyphosphate 1-Phosphatase Produced in Spodoptera frugiperda Cells. Journal of Molecular Biology, 1994, 236, 584-589.	4.2	16
58	Helix stability of oligoglycine, oligoalanine, and oligo- \hat{l}^2 -alanine dodecamers reflected by hydrogen-bond persistence. Proteins: Structure, Function and Bioinformatics, 2014, 82, 3043-3061.	2.6	15
59	Metal-ammonia reduction of triptycene and related benzobarrelene derivatives. Journal of Organic Chemistry, 1979, 44, 4594-4597.	3.2	10
60	Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field. Journal of Chemical Theory and Computation, 2021, 17, 2323-2341.	5.3	10
61	Raising the Performance of the Tinker-HP Molecular Modeling Package [Article v1.0]. Living Journal of Computational Molecular Science, 2019, 1, .	6.4	8
62	Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions. Journal of Computational Chemistry, 1998, 19, 548.	3.3	4