Zhao Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2155541/publications.pdf

Version: 2024-02-01

53	2,733	31	51
papers	citations	h-index	g-index
55	55	55	4271 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	One-Dimensional P-Doped Graphitic Carbon Nitride Tube: Facile Synthesis, Effect of Doping Concentration, and Enhanced Mechanism for Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 1759.	4.1	10
2	Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. Journal of Colloid and Interface Science, 2021, 582, 60-69.	9.4	34
3	Optimizing inner voids in yolk-shell TiO2 nanostructure for high-performance and ultralong-life lithium-sulfur batteries. Chemical Engineering Journal, 2021, 417, 129241.	12.7	42
4	Rational construction of direct Z-scheme SnS/g-C3N4 hybrid photocatalyst for significant enhancement of visible-light photocatalytic activity. Applied Surface Science, 2020, 499, 143941.	6.1	58
5	Engineering Inorganic Nanoflares with Elaborate Enzymatic Specificity and Efficiency for Versatile Biofilm Eradication. Small, 2020, 16, e2002348.	10.0	49
6	An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: insights into the charge storage mechanism and enhanced reaction kinetics. Journal of Materials Chemistry A, 2020, 8, 3450-3458.	10.3	81
7	In-Situ Growing Mesoporous CuO/O-Doped g-C ₃ N ₄ Nanospheres for Highly Enhanced Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32957-32968.	8.0	78
8	Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries. Journal of Central South University, 2019, 26, 1481-1492.	3.0	29
9	Trivalent ion mediated abnormal growth of all-inorganic perovskite nanocrystals and their divergent emission properties. Nanoscale, 2019, 11, 7903-7912.	5.6	29
10	POSS-Derived Synthesis and Full Life Structural Analysis of Si@C as Anode Material in Lithium Ion Battery. Polymers, 2019, 11, 576.	4.5	11
11	Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals Stabilized in Glasses for Lightâ€Emitting Applications. Advanced Optical Materials, 2019, 7, 1801663.	7.3	206
12	Nitrogen-doped graphene in-situ modifying MnO nanoparticles for highly improved lithium storage. Applied Surface Science, 2019, 473, 893-901.	6.1	25
13	Hierarchical MoS ₂ @TiO ₂ Heterojunctions for Enhanced Photocatalytic Performance and Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2018, 13, 1609-1615.	3.3	47
14	Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Naâ€"Se batteries. Journal of Materials Chemistry A, 2018, 6, 22790-22797.	10.3	62
15	Coherent TiO ₂ /BaTiO ₃ heterostructure as a functional reservoir and promoter for polysulfide intermediates. Chemical Communications, 2018, 54, 12250-12253.	4.1	53
16	Boosting Lithium-Ion Storage Capability in CuO Nanosheets via Synergistic Engineering of Defects and Pores. Frontiers in Chemistry, 2018, 6, 428.	3.6	35
17	Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction. RSC Advances, 2018, 8, 28625-28631.	3.6	32
18	A Facile Approach for the Synthesis of Zn2SnO4/BiOBr Hybrid Nanocomposites with Improved Visible-Light Photocatalytic Performance. Nanomaterials, 2018, 8, 313.	4.1	25

#	Article	IF	CITATIONS
19	SnS ₂ /TiO ₂ nanohybrids chemically bonded on nitrogen-doped graphene for lithium–sulfur batteries: synergy of vacancy defects and heterostructures. Nanoscale, 2018, 10, 15505-15512.	5 . 6	116
20	Walnut-like Porous Core/Shell TiO ₂ with Hybridized Phases Enabling Fast and Stable Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10652-10663.	8.0	169
21	Hierarchical porous flower-like TiO 2 -B constructed by thin nanosheets for efficient lithium storage. Materials Letters, 2017, 201, 93-96.	2.6	14
22	Low temperature photoluminescence properties of CsPbBr ₃ quantum dots embedded in glasses. Physical Chemistry Chemical Physics, 2017, 19, 17349-17355.	2.8	102
23	Size-dependent photoluminescence of PbS QDs embedded in silicate glasses. Optical Materials Express, 2017, 7, 2194.	3.0	38
24	Ultrathin g-C3N4 Nanosheet-Modified BiOCl Hierarchical Flower-Like Plate Heterostructure with Enhanced Photostability and Photocatalytic Performance. Crystals, 2017, 7, 266.	2.2	34
25	Synergistic promotion of solar-driven H2 generation by three-dimensionally ordered macroporous structured TiO2-Au-CdS ternary photocatalyst. Applied Catalysis B: Environmental, 2016, 184, 182-190.	20.2	143
26	3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy, 2016, 22, 269-277.	16.0	115
27	Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors. Nano Energy, 2016, 22, 255-268.	16.0	97
28	Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries. Scientific Reports, 2015, 5, 14686.	3.3	47
29	Leakage Current Characterization of BaTi ₂ O ₅ Nanowires. Key Engineering Materials, 2015, 655, 168-173.	0.4	0
30	A Stable, Reusable, and Highly Active Photosynthetic Bioreactor by Bio-Interfacing an Individual Cyanobacterium with a Mesoporous Bilayer Nanoshell. Small, 2015, 11, 2003-2010.	10.0	39
31	Hollow $Cu < sub > 2 < / sub > 0$ microspheres with two active $\{111\}$ and $\{110\}$ facets for highly selective adsorption and photodegradation of anionic dye. RSC Advances, 2015, 5, 55520-55526.	3.6	22
32	Facile One-Pot Synthesis of Hollow Cu ₂ O Spheres with Porous Shells as High-Performance Anode Materials for Lithium Ion Batteries. Current Nanoscience, 2015, 11, 470-474.	1.2	4
33	Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2/Zn2SnO4Coupled Nanocomposites. International Journal of Photoenergy, 2014, 2014, 1-7.	2.5	7
34	Probing significant light absorption enhancement of titania inverse opal films for highly exalted photocatalytic degradation of dye pollutants. Applied Catalysis B: Environmental, 2014, 150-151, 411-420.	20.2	64
35	Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. Journal of Colloid and Interface Science, 2014, 417, 144-151.	9.4	49
36	Facile synthesis of Zn-doped SnO2 dendrite-built hierarchical cube-like architectures and their application in lithium storage. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 189, 32-37.	3.5	35

#	Article	IF	Citations
37	Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. Journal of Colloid and Interface Science, 2014, 418, 74-80.	9.4	47
38	Hydrothermal and surfactant treatment to enhance the photocatalytic activity of hierarchically mesoâ€"macroporous titanias. Catalysis Today, 2013, 212, 89-97.	4.4	14
39	Mesoporous Titanium Dioxide (TiO2) with hierarchically 3D dendrimeric architectures: Formation mechanism and highly enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2013, 394, 252-262.	9.4	12
40	High photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption. Journal of Materials Chemistry A, 2013, 1, 15491.	10.3	90
41	Gas leaching as a path to build hierarchical core–corona porous alumina nanostructures with extraordinary pollutant treatment capacity. RSC Advances, 2013, 3, 1699-1702.	3.6	7
42	Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1394-1400.	10.3	58
43	Tailoring CuO nanostructures for enhanced photocatalytic property. Journal of Colloid and Interface Science, 2012, 384, 1-9.	9.4	162
44	Sub-3nm NiO nanoparticles: Controlled synthesis, and photocatalytic activity. Materials Letters, 2012, 81, 245-247.	2.6	29
45	Tuning the structure of a hierarchically porous ZrO2 for dye molecule depollution. Microporous and Mesoporous Materials, 2012, 152, 110-121.	4.4	10
46	Threeâ€Dimensionally Ordered Macroporous Titania with Structural and Photonic Effects for Enhanced Photocatalytic Efficiency. ChemSusChem, 2011, 4, 1481-1488.	6.8	81
47	Wellâ€Organized Zeolite Nanocrystal Aggregates with Interconnected Hierarchically Micro–Meso–Macropore Systems Showing Enhanced Catalytic Performance. Chemistry - A European Journal, 2011, 17, 14987-14995.	3.3	78
48	Synthesis and Characterization of Bowl-Like Single-Crystalline BaTiO3 Nanoparticles. Nanoscale Research Letters, 2010, 5, 1217-1221.	5.7	86
49	Synthesis and Characterization of Single-Crystalline BaTi ₂ O ₅ Nanowires. Journal of Physical Chemistry C, 2010, 114, 1748-1751.	3.1	27
50	Nanoscale and Spatial Variations Investigation of Etch Damage in Integrated Ferroelectric Capacitor Side Wall by Piezoresponse Force Microscopy. Japanese Journal of Applied Physics, 2009, 48, 011401.	1.5	2
51	Controlled Synthesize of BaTiO ₃ Nanoparticles and BaCO ₃ Nanowires through the Reverse Micelle System. Advanced Materials Research, 2009, 66, 171-174.	0.3	0
52	Large Scale Synthesis of BaTiO ₃ Nanorods by a Template Way. Advanced Materials Research, 2009, 79-82, 373-376.	0.3	1
53	The influence of spatial coherence on the Goos–Hächen shift at total internal reflection. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 055401.	1.5	28