
Soo Ok Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2155387/publications.pdf Version: 2024-02-01

SOO OKLEE

#	Article	IF	CITATIONS
1	Glucocorticoid receptor upregulation increases radioresistance and triggers androgen independence of prostate cancer. Prostate, 2019, 79, 1414-1426.	2.3	13
2	IL-6 signaling contributes to radioresistance of prostate cancer through key DNA repair-associated molecules ATM, ATR, and BRCA 1/2. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1471-1484.	2.5	14
3	NFκB and TNFα as individual key molecules associated with the cisplatin-resistance and radioresistance of lung cancer. Experimental Cell Research, 2019, 374, 181-188.	2.6	9
4	In vitro -induced M2 type macrophages induces the resistance of prostate cancer cells to cytotoxic action of NK cells. Experimental Cell Research, 2018, 364, 113-123.	2.6	20
5	Adipocytes affect castrationâ€resistant prostate cancer cells to develop the resistance to cytotoxic action of NK cells with alterations of PDâ€L1/NKG2D ligand levels in tumor cells. Prostate, 2018, 78, 353-364.	2.3	36
6	Inhibition of ILâ€6â€JAK/Stat3 signaling in castrationâ€resistant prostate cancer cells enhances the NK cellâ€mediated cytotoxicity via alteration of PD‣1/NKG2D ligand levels. Molecular Oncology, 2018, 12, 269-286.	4.6	92
7	Increased infiltration of macrophages to radioresistant lung cancer cells contributes to the development of the additional resistance of tumor cells to the cytotoxic effects of NK cells. International Journal of Oncology, 2018, 53, 317-328.	3.3	4
8	Neuroendocrine differentiation contributes to radioresistance development and metastatic potential increase in non-small cell lung cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1878-1890.	4.1	9
9	IL-6 Mediates Macrophage Infiltration after Irradiation via Up-regulation of CCL2/CCL5 in Non-small Cell Lung Cancer. Radiation Research, 2017, 187, 50-59.	1.5	53
10	Enhancing NK cell-mediated cytotoxicity to cisplatin-resistant lung cancer cells via MEK/Erk signaling inhibition. Scientific Reports, 2017, 7, 7958.	3.3	43
11	Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer. Cancer Biology and Therapy, 2017, 18, 606-615.	3.4	17
12	Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. Oncotarget, 2017, 8, 80506-80520.	1.8	59
13	Cisplatin treatment increases stemness through upregulation of hypoxiaâ€inducible factors by interleukinâ€6 in nonâ€small cell lung cancer. Cancer Science, 2016, 107, 746-754.	3.9	46
14	Targeting fatty acid synthase with ASC-J9 suppresses proliferation and invasion of prostate cancer cells. Molecular Carcinogenesis, 2016, 55, 2278-2290.	2.7	39
15	Androgen receptor (AR) in cardiovascular diseases. Journal of Endocrinology, 2016, 229, R1-R16.	2.6	58
16	A FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer. Oncotarget, 2016, 7, 55543-55554.	1.8	45
17	IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer. Oncotarget, 2016, 7, 6626-6638.	1.8	66
18	IL-6 signaling contributes to cisplatin resistance in non-small cell lung cancer via the up-regulation of anti-apoptotic and dna repair associated molecules. Oncotarget, 2015, 6, 27651-27660.	1.8	62

SOO OK LEE

#	Article	IF	CITATIONS
19	Erk/MAP Kinase Signaling Pathway and Neuroendocrine Differentiation of Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2014, 9, 50-58.	1.1	23
20	Concise Review: Androgen Receptor Differential Roles in Stem/Progenitor Cells Including Prostate, Embryonic, Stromal, and Hematopoietic Lineages. Stem Cells, 2014, 32, 2299-2308.	3.2	39
21	New Therapeutic Approach to Suppress Castration-Resistant Prostate Cancer Using ASC-J9 via Targeting Androgen Receptor in Selective Prostate Cells. American Journal of Pathology, 2013, 182, 460-473.	3.8	73
22	Loss of androgen receptor promotes adipogenesis but suppresses osteogenesis in bone marrow stromal cells. Stem Cell Research, 2013, 11, 938-950.	0.7	21
23	Targeting androgen receptor in bone marrow mesenchymal stem cells leads to better transplantation therapy efficacy in liver cirrhosis. Hepatology, 2013, 57, 1550-1563.	7.3	58
24	New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. Journal of Molecular Cell Biology, 2013, 5, 14-26.	3.3	91
25	Increased Chemosensitivity via Targeting Testicular Nuclear Receptor 4 (TR4)-Oct4-Interleukin 1 Receptor Antagonist (IL1Ra) Axis in Prostate Cancer CD133+ Stem/Progenitor Cells to Battle Prostate Cancer. Journal of Biological Chemistry, 2013, 288, 16476-16483.	3.4	49
26	Androgen Receptor (AR) Pathophysiological Roles in Androgen Related Diseases in Skin, Metabolism Syndrome, Bone/Muscle and Neuron/Immune Systems: Lessons Learned from Mice Lacking AR in Specific Cells. Nuclear Receptor Signaling, 2013, 11, nrs.11001.	1.0	69
27	Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. Journal of Endocrinology, 2012, 213, 173-182.	2.6	39
28	Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate, 2008, 68, 85-91.	2.3	38
29	Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate, 2007, 67, 764-773.	2.3	85
30	Development of an androgen-deprivation induced and androgen suppressed human prostate cancer cell line. Prostate, 2007, 67, 1293-1300.	2.3	16
31	Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA). Prostate, 2006, 66, 1070-1075.	2.3	78
32	Selenium Disrupts Estrogen Signaling by Altering Estrogen Receptor Expression and Ligand Binding in Human Breast Cancer Cells. Cancer Research, 2005, 65, 3487-3492.	0.9	55
33	Requirement for NF-κB in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate, 2005, 64, 160-167.	2.3	58
34	STAT3 and Transactivation of Steroid Hormone Receptors. Vitamins and Hormones, 2005, 70, 333-357.	1.7	3
35	Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate, 2004, 60, 178-186.	2.3	79
36	RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate, 2004, 60, 303-309.	2.3	89

#	Article	IF	CITATIONS
37	Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene, 2003, 22, 7981-7988.	5.9	61