Mingyue Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2155229/publications.pdf Version: 2024-02-01

MINCYLE SHEN

#	Article	IF	CITATIONS
1	Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 2018, 183, 91-101.	5.1	833
2	lsolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chemistry, 2010, 119, 1626-1632.	4.2	269
3	Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. Food Hydrocolloids, 2016, 53, 7-15.	5.6	246
4	Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chemistry, 2013, 136, 1453-1460.	4.2	234
5	Recent Advances in Momordica charantia: Functional Components and Biological Activities. International Journal of Molecular Sciences, 2017, 18, 2555.	1.8	221
6	Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends in Food Science and Technology, 2018, 74, 147-157.	7.8	193
7	Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydrate Polymers, 2012, 89, 177-184.	5.1	190
8	Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chemistry, 2015, 186, 97-105.	4.2	171
9	Physico-chemical properties, antioxidant activities and angiotensin-l converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chemistry, 2019, 270, 243-250.	4.2	170
10	Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021, 140, 109858.	2.9	169
11	Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydrate Polymers, 2020, 229, 115436.	5.1	164
12	Sulfated polysaccharides: Immunomodulation and signaling mechanisms. Trends in Food Science and Technology, 2019, 92, 1-11.	7.8	161
13	Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition. Carbohydrate Polymers, 2018, 192, 193-201.	5.1	135
14	Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydrate Polymers, 2017, 174, 669-676.	5.1	117
15	Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions. Food Hydrocolloids, 2020, 99, 105371.	5.6	117
16	Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota. International Journal of Biological Macromolecules, 2019, 121, 743-751.	3.6	114
17	Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system. Trends in Food Science and Technology, 2021, 110, 822-832.	7.8	107
18	Polysaccharide from Mesona chinensis : Extraction optimization, physicochemical characterizations and antioxidant activities. International Journal of Biological Macromolecules, 2017, 99, 665-673.	3.6	101

#	Article	IF	CITATIONS
19	Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves. Carbohydrate Polymers, 2015, 133, 596-604.	5.1	99
20	Analysis of monosaccharide composition of Cyclocarya paliurus polysaccharide with anion exchange chromatography. Carbohydrate Polymers, 2013, 98, 976-981.	5.1	98
21	Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydrate Polymers, 2020, 230, 115650.	5.1	91
22	Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocolloids, 2020, 100, 105412.	5.6	89
23	Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation. Carbohydrate Polymers, 2016, 136, 988-994.	5.1	88
24	Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice. Scientific Reports, 2017, 7, 40402.	1.6	88
25	Sulfated polysaccharides from Cyclocarya paliurus reduce H 2 O 2 -induced oxidative stress in RAW264.7 cells. International Journal of Biological Macromolecules, 2015, 80, 410-417.	3.6	87
26	Effect of sodium carbonate on the gelation, rheology, texture and structural properties of maize starch-Mesona chinensis polysaccharide gel. Food Hydrocolloids, 2019, 87, 943-951.	5.6	78
27	Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus. Carbohydrate Polymers, 2016, 151, 305-312.	5.1	77
28	Influence of Mesona blumes polysaccharide on the gel properties and microstructure of acid-induced soy protein isolate gels. Food Chemistry, 2020, 313, 126125.	4.2	77
29	Sulfated modification enhanced the antioxidant activity of Mesona chinensis Benth polysaccharide and its protective effect on cellular oxidative stress. International Journal of Biological Macromolecules, 2019, 136, 1000-1006.	3.6	76
30	Optimisation of microwaveâ€assisted extraction of polysaccharides from <i>Cyclocarya paliurus</i> (Batal.) Iljinskaja using response surface methodology. Journal of the Science of Food and Agriculture, 2010, 90, 1353-1360.	1.7	73
31	Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents. Carbohydrate Polymers, 2020, 230, 115713.	5.1	73
32	An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics. International Journal of Biological Macromolecules, 2018, 107, 1591-1598.	3.6	72
33	Effect of Mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch. International Journal of Biological Macromolecules, 2018, 118, 945-951.	3.6	71
34	Structure, function and advance application of microwave-treated polysaccharide: A review. Trends in Food Science and Technology, 2022, 123, 198-209.	7.8	69
35	Effect of different Mesona chinensis polysaccharides on pasting, gelation, structural properties and in vitro digestibility of tapioca starch-Mesona chinensis polysaccharides gels. Food Hydrocolloids, 2020, 99, 105327.	5.6	68
36	Recent progress in the research of yam mucilage polysaccharides: Isolation, structure and bioactivities. International Journal of Biological Macromolecules, 2020, 155, 1262-1269.	3.6	66

#	Article	IF	CITATIONS
37	Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis Benth and their protective effect on injured NCTC-1469 cells induced by H2O2. Carbohydrate Polymers, 2017, 175, 538-546.	5.1	65
38	Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth. Carbohydrate Polymers, 2018, 200, 191-199.	5.1	63
39	Interaction between rice starch and Mesona chinensis Benth polysaccharide gels: Pasting and gelling properties. Carbohydrate Polymers, 2020, 240, 116316.	5.1	63
40	Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods, 2019, 8, 582.	1.9	62
41	Simultaneous determination of organophosphorus, organochlorine, pyrethriod and carbamate pesticides in Radix astragali by microwave-assisted extraction/dispersive-solid phase extraction coupled with GC–MS. Talanta, 2012, 97, 131-141.	2.9	61
42	Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends in Food Science and Technology, 2021, 118, 539-557.	7.8	56
43	Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. International Journal of Biological Macromolecules, 2020, 152, 766-774.	3.6	55
44	Separation of water-soluble polysaccharides from Cyclocarya paliurus by ultrafiltration process. Carbohydrate Polymers, 2014, 101, 479-483.	5.1	54
45	Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride-induced acute liver injury in mice. International Journal of Biological Macromolecules, 2019, 124, 788-795.	3.6	52
46	Physicochemical characterization and immunomodulatory activity of sulfated Chinese yam polysaccharide. International Journal of Biological Macromolecules, 2020, 165, 635-644.	3.6	52
47	Effect of Mesona chinensis polysaccharide on the retrogradation properties of maize and waxy maize starches during storage. Food Hydrocolloids, 2020, 101, 105538.	5.6	49
48	Preparation, characterization, antioxidant activity and protective effect against cellular oxidative stress of phosphorylated polysaccharide from Cyclocarya paliurus. Food and Chemical Toxicology, 2020, 145, 111754.	1.8	49
49	Cyclocarya paliurus polysaccharide alleviates liver inflammation in mice via beneficial regulation of gut microbiota and TLR4/MAPK signaling pathways. International Journal of Biological Macromolecules, 2020, 160, 164-174.	3.6	49
50	Decolorization of polysaccharides solution from Cyclocarya paliurus (Batal.) Iljinskaja using ultrasound/H2O2 process. Carbohydrate Polymers, 2011, 84, 255-261.	5.1	48
51	Simultaneous Determination of Acrylamide and 5-Hydroxymethylfurfural in Heat-Processed Foods Employing Enhanced Matrix Removal—Lipid as a New Dispersive Solid-Phase Extraction Sorbent Followed by Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry. 2019. 67. 5017-5025.	2.4	45
52	Cyclocarya paliurus polysaccharide improves metabolic function of gut microbiota by regulating short-chain fatty acids and gut microbiota composition. Food Research International, 2021, 141, 110119.	2.9	42
53	A comprehensive review of advanced glycosylation end products and N- Nitrosamines in thermally processed meat products. Food Control, 2022, 131, 108449.	2.8	40
54	Formation and reduction of 3-monochloropropane-1,2-diol esters in peanut oil during physical refining. Food Chemistry, 2016, 199, 605-611.	4.2	39

#	Article	IF	CITATIONS
55	Physicochemical, rheological and thermal properties of Mesona chinensis polysaccharides obtained by sodium carbonate assisted and cellulase assisted extraction. International Journal of Biological Macromolecules, 2019, 126, 30-36.	3.6	39
56	Ameliorative effect of Cyclocarya paliurus polysaccharides against carbon tetrachloride induced oxidative stress in liver and kidney of mice. Food and Chemical Toxicology, 2020, 135, 111014.	1.8	38
57	Interactions between tapioca starch and Mesona chinensis polysaccharide: Effects of urea and NaCl. Food Hydrocolloids, 2021, 111, 106268.	5.6	37
58	Effect of maize, potato, and pea starches with Mesona chinensis polysaccharide on pasting, gelatinization properties, granular morphology and digestion. Food Hydrocolloids, 2020, 108, 106047.	5.6	36
59	The water-soluble non-starch polysaccharides from natural resources against excessive oxidative stress: A potential health-promoting effect and its mechanisms. International Journal of Biological Macromolecules, 2021, 171, 320-330.	3.6	36
60	Maillard reaction harmful products in dairy products: Formation, occurrence, analysis, and mitigation strategies. Food Research International, 2022, 151, 110839.	2.9	36
61	Role of salt ions and molecular weights on the formation of Mesona chinensis polysaccharide-chitosan polyelectrolyte complex hydrogel. Food Chemistry, 2020, 333, 127493.	4.2	35
62	Sulfation modification enhances the intestinal regulation of <i>Cyclocarya paliurus</i> polysaccharides in cyclophosphamide-treated mice <i>via</i> restoring intestinal mucosal barrier function and modulating gut microbiota. Food and Function, 2021, 12, 12278-12290.	2.1	35
63	Immunomodulatory activities of sulfated Cyclocarya paliurus polysaccharides with different degrees of substitution on mouse spleen lymphocytes. Journal of Functional Foods, 2020, 64, 103706.	1.6	34
64	Mesona chinensis polysaccharide on the thermal, structural and digestibility properties of waxy and normal maize starches. Food Hydrocolloids, 2021, 112, 106317.	5.6	34
65	Sulfated modification enhances the modulatory effect of yam polysaccharide on gut microbiota in cyclophosphamide-treated mice. Food Research International, 2021, 145, 110393.	2.9	34
66	Simultaneous determination of furan and 2-alkylfurans in heat-processed foods by automated static headspace gas chromatography-mass spectrometry. LWT - Food Science and Technology, 2016, 72, 44-54.	2.5	33
67	Differences between phytosterols with different structures in regulating cholesterol synthesis, transport and metabolism in Caco-2 cells. Journal of Functional Foods, 2020, 65, 103715.	1.6	32
68	Effect of acid/alkali shifting on function, gelation properties, and microstructure of Mesona chinensis polysaccharide-whey protein isolate gels. Food Hydrocolloids, 2021, 117, 106699.	5.6	32
69	Mesona chinensis polysaccharide/zein nanoparticles to improve the bioaccesibility and in vitro bioactivities of curcumin. Carbohydrate Polymers, 2022, 295, 119875.	5.1	32
70	Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES. Carbohydrate Polymers, 2013, 94, 216-220.	5.1	31
71	Gelling mechanism and interactions of polysaccharides from Mesona blumes: Role of urea and calcium ions. Carbohydrate Polymers, 2019, 212, 270-276.	5.1	31
72	pH and lipid unsaturation impact the formation of acrylamide and 5-hydroxymethylfurfural in model system at frying temperature. Food Research International, 2019, 123, 403-413.	2.9	26

#	Article	IF	CITATIONS
73	Mung Bean Protein Hydrolysates Protect Mouse Liver Cell Line Nctc-1469 Cell from Hydrogen Peroxide-Induced Cell Injury. Foods, 2020, 9, 14.	1.9	26
74	Construction and characterization of Mesona chinensis polysaccharide-chitosan hydrogels, role of chitosan deacetylation degree. Carbohydrate Polymers, 2021, 257, 117608.	5.1	26
75	Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocolloids, 2022, 123, 107136.	5.6	25
76	Effect of fatty acids and triglycerides on the formation of lysine-derived advanced glycation end-products in model systems exposed to frying temperature. RSC Advances, 2019, 9, 15162-15170.	1.7	24
77	Acid/alkali shifting of Mesona chinensis polysaccharide-whey protein isolate gels: Characterization and formation mechanism. Food Chemistry, 2021, 355, 129650.	4.2	24
78	Sulfated modification enhances the immunomodulatory effect of Cyclocarya paliurus polysaccharide on cyclophosphamide-induced immunosuppressed mice through MyD88-dependent MAPK/NF-κB and PI3K-Akt signaling pathways. Food Research International, 2021, 150, 110756.	2.9	24
79	Antioxidants Inhibit Formation of 3-Monochloropropane-1,2-diol Esters in Model Reactions. Journal of Agricultural and Food Chemistry, 2015, 63, 9850-9854.	2.4	23
80	Mesona chinensis Benth polysaccharides alleviates liver injury by beneficial regulation of gut microbiota in cyclophosphamide-induced mice. Food Science and Human Wellness, 2022, 11, 74-84.	2.2	23
81	<i>Mesona chinensis</i> Benth Polysaccharides Alleviate DSSâ€Induced Ulcerative Colitis via Inhibiting of TLR4/MAPK/NFâ€IPB Signaling Pathways and Modulating Intestinal Microbiota. Molecular Nutrition and Food Research, 2022, 66, .	1.5	23
82	Rheological behavior, microstructure characterization and formation mechanism of Mesona blumes polysaccharide gels induced by calcium ions. Food Hydrocolloids, 2019, 94, 136-143.	5.6	22
83	Effect of Mesona chinensis polysaccharide on the pasting, rheological, and structural properties of tapioca starch varying in gelatinization temperatures. International Journal of Biological Macromolecules, 2020, 156, 137-143.	3.6	22
84	Improve properties of sweet potato starch film using dual effects: Combination Mesona chinensis Benth polysaccharide and sodium carbonate. LWT - Food Science and Technology, 2021, 140, 110679.	2.5	22
85	Cross-linked corn bran arabinoxylan improves the pasting, rheological, gelling properties of corn starch and reduces its in vitro digestibility. Food Hydrocolloids, 2022, 126, 107440.	5.6	22
86	Gelation characteristics of Mesona chinensis polysaccharide-maize starches gels: Influences of KCl and NaCl. Journal of Cereal Science, 2020, 96, 103108.	1.8	21
87	Characterization and authentication of olive, camellia and other vegetable oils by combination of chromatographic and chemometric techniques: role of fatty acids, tocopherols, sterols and squalene. European Food Research and Technology, 2021, 247, 411-426.	1.6	21
88	The role of alkali in sweet potato starch-Mesona chinensis Benth polysaccharide gels: Gelation, rheological and structural properties. International Journal of Biological Macromolecules, 2021, 170, 366-374.	3.6	21
89	Influences of Operating Parameters on the Formation of Furan During Heating Based on Models of Polyunsaturated Fatty Acids. Journal of Food Science, 2015, 80, T1432-7.	1.5	20
90	Sulfated Chinese yam polysaccharide enhances the immunomodulatory activity of RAW 264.7 cells <i>via</i> the TLR4-MAPK/NF-I°B signaling pathway. Food and Function, 2022, 13, 1316-1326.	2.1	20

#	Article	IF	CITATIONS
91	Identification of Jiangxi wines by three-dimensional fluorescence fingerprints. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 605-610.	2.0	19
92	Sulfated Mesona chinensis Benth polysaccharide enhance the immunomodulatory activities of cyclophosphamide-treated mice. Journal of Functional Foods, 2021, 76, 104321.	1.6	18
93	Preparation and characterization of hyacinth bean starch film incorporated with TiO2 nanoparticles and Mesona chinensis Benth polysaccharide. International Journal of Biological Macromolecules, 2021, 190, 151-158.	3.6	18
94	Combined RNA-seq and molecular biology technology revealed the protective effect of Cyclocarya paliurus polysaccharide on H2O2-induced oxidative damage in LO2 cells thought regulating mitochondrial function, oxidative stress and PI3K/Akt and MAPK signaling pathways. Food Research International, 2022, 155, 111080.	2.9	17
95	Dietary polysaccharide from Mung bean [<i>Vigna radiate</i> (Linn.) Wilczek] skin modulates gut microbiota and shortâ€chain fatty acids in mice. International Journal of Food Science and Technology, 2022, 57, 2581-2589.	1.3	16
96	Effect of calcium chloride on heat-induced Mesona chinensis polysaccharide-whey protein isolation gels: Gel properties and interactions. LWT - Food Science and Technology, 2022, 155, 112907.	2.5	16
97	Mechanisms of RAW264.7 macrophages immunomodulation mediated by polysaccharide from mung bean skin based on RNA-seq analysis. Food Research International, 2022, 154, 111017.	2.9	16
98	Effects of xanthan, guar and Mesona chinensis Benth gums on the pasting, rheological, texture properties and microstructure of pea starch gels. Food Hydrocolloids, 2022, 125, 107391.	5.6	15
99	Effects of carboxymethyl chitosan on physicochemical, rheological properties and in vitro digestibility of yam starch. International Journal of Biological Macromolecules, 2021, 192, 537-545.	3.6	14
100	Formation mechanism of AGEs in Maillard reaction model systems containing ascorbic acid. Food Chemistry, 2022, 378, 132108.	4.2	14
101	Isolation, Characterization and Antioxidant Activity of Yam Polysaccharides. Foods, 2022, 11, 800.	1.9	14
102	Effect of acidity regulators on acrylamide and 5-hydroxymethylfurfural formation in French fries: The dual role of pH and acid radical ion. Food Chemistry, 2022, 371, 131154.	4.2	13
103	Fabrication of Zein/ <i>Mesona chinensis</i> Polysaccharide Nanoparticles: Physical Characteristics and Delivery of Quercetin. ACS Applied Bio Materials, 2022, 5, 1817-1828.	2.3	13
104	Discrimination of Different <i>Ganoderma</i> Species and their Region Based on GC-MS Profiles of Sterols and Pattern Recognition Techniques. Analytical Letters, 2011, 44, 863-873.	1.0	12
105	Simultaneous Determination of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Analytical Methods, 2021, 14, 1567-1576.	1.3	12
106	Mesona chinensis polysaccharides promote molecular crosslinking and gel formation of debranched waxy maize starch. LWT - Food Science and Technology, 2021, 148, 111773.	2.5	12
107	Evaluation of trans fatty acids, carbonyl compounds and bioactive minor components in commercial linseed oils. Food Chemistry, 2022, 369, 130930.	4.2	12
108	Curcumin-Loaded pH-Sensitive Biopolymer Hydrogels: Fabrication, Characterization, and Release Properties. ACS Food Science & Technology, 2022, 2, 512-520.	1.3	12

#	Article	IF	CITATIONS
109	Dual modifications on the gelatinization, textural, and morphology properties of pea starch by sodium carbonate and Mesona chinensis polysaccharide. Food Hydrocolloids, 2020, 102, 105601.	5.6	11
110	Natural Antioxidants and Hydrocolloids as a Mitigation Strategy to Inhibit Advanced Glycation End Products (AGEs) and 5-Hydroxymethylfurfural (HMF) in Butter Cookies. Foods, 2022, 11, 657.	1.9	11
111	Comparative study of the effects of antioxidants on furan formation during thermal processing in model systems. LWT - Food Science and Technology, 2017, 75, 286-292.	2.5	10
112	Changes in polysaccharides structure and bioactivity during Mesona chinensis Benth storage. Current Research in Food Science, 2022, 5, 392-400.	2.7	10
113	Phytochemical composition, antioxidant activities and immunomodulatory effects of pigment extracts from Wugong Mountain purple red rice bran. Food Research International, 2022, 157, 111493.	2.9	10
114	Investigation into the contents of nutrients, Nε-carboxymethyllysine and Nε-carboxyethyllysine in various commercially canned fishes to find the correlation between them. Journal of Food Composition and Analysis, 2021, 96, 103737.	1.9	9
115	Determination of 3-Monochloropropane-1,2-Diol Esters in Edible Oil―Method Validation and Estimation of Measurement Uncertainty. Food Analytical Methods, 2016, 9, 845-855.	1.3	8
116	Changes in fatty acids and formation of carbonyl compounds during frying of rice cakes and hairtails. Journal of Food Composition and Analysis, 2021, 101, 103937.	1.9	8
117	Quantitative assessment of furosine, furfurals, and advanced glycation end products in different types of commercially available cheeses. Food Control, 2022, 136, 108866.	2.8	7
118	RNA-seq based elucidation of mechanism underlying Mesona chinensis Benth polysaccharide protected H2O2-induced oxidative damage in LO2 cells. Food Research International, 2022, 157, 111383.	2.9	6
119	Characterization and identification of different Chinese fermented vinegars based on their volatile components. Journal of Food Biochemistry, 2021, 45, e13670.	1.2	5
120	Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels. Food Hydrocolloids, 2022, 125, 107375.	5.6	5
121	Effects of processing parameters on furan formation in canned strawberry jam. Food Chemistry, 2021, 358, 129819.	4.2	4
122	Separation and Identification of Ergosta-4,6,8(14),22-tetraen-3-one from Ganoderma atrum by High-Speed Counter-Current Chromatography and Spectroscopic Methods. Chromatographia, 2008, 67, 999-1001.	0.7	3
123	Effects of cooking factors on the formation of heterocyclic aromatic amines in fried beef patties. Journal of Food Processing and Preservation, 2022, 46, .	0.9	3
124	Inhibitory effect of hydrocolloids and ultrasound treatments on acrylamide and 5-hydroxymethylfurfural formation in French fries. Food Hydrocolloids, 2022, 133, 107839.	5.6	3
125	Improvement of Properties of Chestnut Starch Gels Using Dual Effects: Combination of the <i>Mesona chinensis</i> Benth Polysaccharide and Sodium Chloride. ACS Food Science & Technology, 2022, 2, 151-159.	1.3	2
126	Structural Characterization and Health Effects of Polysaccharides from Momordica charantia on Diabetes Mellitus. , 2021, , 129-145.		0