
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2155224/publications.pdf Version: 2024-02-01

ALEXANDER POR

#	Article	IF	CITATIONS
1	Reforming China's fertilizer policies: implications for nitrogen pollution reduction and food security. Sustainability Science, 2023, 18, 407-420.	4.9	14
2	Impact of declining renewable energy costs on electrification in low-emission scenarios. Nature Energy, 2022, 7, 32-42.	39.5	196
3	Biodiversity postâ€2020: Closing the gap between global targets and nationalâ€level implementation. Conservation Letters, 2022, 15, e12848.	5.7	32
4	Consistent coupling of positions and rotations for embedding 1D Cosserat beams into 3D solid volumes. Computational Mechanics, 2022, 69, 701-732.	4.0	6
5	How do we best synergize climate mitigation actions to coâ€benefit biodiversity?. Global Change Biology, 2022, 28, 2555-2577.	9.5	28
6	Accounting for local temperature effect substantially alters afforestation patterns. Environmental Research Letters, 2022, 17, 024030.	5.2	3
7	Defining a sustainable development target space for 2030 and 2050. One Earth, 2022, 5, 142-156.	6.8	54
8	Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environmental Research Letters, 2022, 17, 045004.	5.2	11
9	Projected environmental benefits of replacing beef with microbial protein. Nature, 2022, 605, 90-96.	27.8	72
10	Global biomass supply modeling for long-run management of the climate system. Climatic Change, 2022, 172, .	3.6	8
11	Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100. Nature Food, 2022, 3, 341-348.	14.0	28
12	One-way coupled fluid–beam interaction: capturing the effect of embedded slender bodies on global fluid flow and vice versa. Advanced Modeling and Simulation in Engineering Sciences, 2022, 9, .	1.7	6
13	Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planetary Health, The, 2021, 5, e50-e62.	11.4	135
14	Efficient mortarâ€based algorithms for embedding 1D fibers into 3D volumes. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000151.	0.2	1
15	Fluidâ€Structure Interaction of Slender Continua with 3â€Dimensional Flow: An Embedded Finite Element Approach. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000244.	0.2	0
16	Combining ambitious climate policies with efforts to eradicate poverty. Nature Communications, 2021, 12, 2342.	12.8	63
17	Critical adjustment of land mitigation pathways for assessing countries' climate progress. Nature Climate Change, 2021, 11, 425-434.	18.8	61
18	Algebraic multigrid methods for saddle point systems arising from mortar contact formulations. International Journal for Numerical Methods in Engineering, 2021, 122, 3749-3779.	2.8	9

#	Article	IF	CITATIONS
19	Carbon dioxide removal technologies are not born equal. Environmental Research Letters, 2021, 16, 074021.	5.2	45
20	Bioenergy for climate change mitigation: Scale and sustainability. GCB Bioenergy, 2021, 13, 1346-1371.	5.6	43
21	Quantification of global and national nitrogen budgets for crop production. Nature Food, 2021, 2, 529-540.	14.0	108
22	A sustainable development pathway for climate action within the UN 2030 Agenda. Nature Climate Change, 2021, 11, 656-664.	18.8	179
23	Estimating global land system impacts of timber plantations using MAgPIE 4.3.5. Geoscientific Model Development, 2021, 14, 6467-6494.	3.6	2
24	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	23.7	27
25	Landâ€based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, 2021, 27, 6025-6058.	9.5	114
26	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	18.8	102
27	Food system development pathways for healthy, nature-positive and inclusive food systems. Nature Food, 2021, 2, 928-934.	14.0	24
28	Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Climatic Change, 2020, 163, 1569-1586.	3.6	38
29	Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Global Ecology and Conservation, 2020, 22, e00886.	2.1	17
30	A multi-scale FEM-BEM formulation for contact mechanics between rough surfaces. Computational Mechanics, 2020, 65, 731-749.	4.0	11
31	Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People and Nature, 2020, 2, 1172-1195.	3.7	127
32	A mortar-type finite element approach for embedding 1D beams into 3D solid volumes. Computational Mechanics, 2020, 66, 1377-1398.	4.0	23
33	The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Scientific Reports, 2020, 10, 19778.	3.3	85
34	Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective. Climatic Change, 2020, 163, 1675-1693.	3.6	23
35	Beyond land-use intensity: Assessing future global crop productivity growth under different socioeconomic pathways. Technological Forecasting and Social Change, 2020, 160, 120208.	11.6	21
36	Are scenario projections overly optimistic about future yield progress?. Global Environmental Change, 2020, 64, 102120.	7.8	11

#	Article	IF	CITATIONS
37	The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa. Climatic Change, 2020, 162, 1213-1229.	3.6	22
38	Food security under high bioenergy demand toward long-term climate goals. Climatic Change, 2020, 163, 1587-1601.	3.6	33
39	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	27.8	413
40	An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change. Climatic Change, 2020, 163, 1539-1551.	3.6	5
41	Quantification of an efficiency–sovereignty trade-off in climate policy. Nature, 2020, 588, 261-266.	27.8	61
42	Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 2020, 17, 2107-2133.	3.3	24
43	Innovation can accelerate the transition towards a sustainable food system. Nature Food, 2020, 1, 266-272.	14.0	285
44	A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change, 2020, 61, 102029.	7.8	30
45	The world's growing municipal solid waste: trends and impacts. Environmental Research Letters, 2020, 15, 074021.	5.2	207
46	Peatland protection and restoration are key for climate change mitigation. Environmental Research Letters, 2020, 15, 104093.	5.2	74
47	Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth System Science Data, 2020, 12, 789-804.	9.9	26
48	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	3.6	408
49	Producing Policy-relevant Science by Enhancing Robustness and Model Integration for the Assessment of Global Environmental Change. Environmental Modelling and Software, 2019, 111, 248-258.	4.5	4
50	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	2.7	24
51	An academic approach to the multidisciplinary development of liquid-oxygen turbopumps for space applications. CEAS Space Journal, 2019, 11, 193-203.	2.3	0
52	MAgPIE 4 – aÂmodular open-source framework for modeling global land systems. Geoscientific Model Development, 2019, 12, 1299-1317.	3.6	56
53	Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources, 2019, 44, 255-286.	13.4	181
54	A consistent approach for fluidâ€structureâ€contact interaction based on a porous flow model for rough surface contact. International Journal for Numerical Methods in Engineering, 2019, 119, 1345-1378.	2.8	23

ALEXANDER POPP

#	Article	IF	CITATIONS
55	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	12.8	123
56	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	23.7	152
57	Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 2019, 12, 1443-1475.	3.6	496
58	Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nature Communications, 2019, 10, 5229.	12.8	188
59	Analysing interactions among Sustainable Development Goals with Integrated Assessment Models. Global Transitions, 2019, 1, 210-225.	4.1	126
60	Contribution of the land sector to a 1.5 °C world. Nature Climate Change, 2019, 9, 817-828.	18.8	301
61	Biorthogonal splines for optimal weak patch-coupling in isogeometric analysis with applications to finite deformation elasticity. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 197-215.	6.6	24
62	Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory Versus Simo–Reissner Theory. Archives of Computational Methods in Engineering, 2019, 26, 163-243.	10.2	114
63	The impact of global change on economic values of water for Public Irrigation Schemes at the São Francisco River Basin in Brazil. Regional Environmental Change, 2018, 18, 1943-1955.	2.9	8
64	Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 2018, 8, 325-332.	18.8	795
65	Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global Change Biology, 2018, 24, 3199-3213.	9.5	22
66	A monolithic, mortarâ€based interface coupling and solution scheme for finite element simulations of lithiumâ€ion cells. International Journal for Numerical Methods in Engineering, 2018, 114, 1411-1437.	2.8	12
67	Large uncertainty in carbon uptake potential of landâ€based climateâ€change mitigation efforts. Global Change Biology, 2018, 24, 3025-3038.	9.5	56
68	Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nature Climate Change, 2018, 8, 151-155.	18.8	207
69	Pathways limiting warming to 1.5°C: a tale of turning around in no time?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160457.	3.4	84
70	Simulating and delineating future land change trajectories across Europe. Regional Environmental Change, 2018, 18, 733-749.	2.9	70
71	Identifying pathways to visions of future land use in Europe. Regional Environmental Change, 2018, 18, 817-830.	2.9	26
72	A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways. Regional Environmental Change, 2018, 18, 751-762.	2.9	15

#	Article	IF	CITATIONS
73	Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures. International Journal of Solids and Structures, 2018, 154, 124-146.	2.7	36
74	Algebraic multigrid methods for dual mortar finite element formulations in contact mechanics. International Journal for Numerical Methods in Engineering, 2018, 114, 399-430.	2.8	13
75	A mortar finite element approach for point, line, and surface contact. International Journal for Numerical Methods in Engineering, 2018, 114, 255-291.	2.8	13
76	Between Scylla and Charybdis: Delayed mitigation narrows the passage between large-scale CDR and high costs. Environmental Research Letters, 2018, 13, 044015.	5.2	73
77	Short term policies to keep the door open for Paris climate goals. Environmental Research Letters, 2018, 13, 074022.	5.2	48
78	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	3.6	61
79	Large-scale bioenergy production: how to resolve sustainability trade-offs?. Environmental Research Letters, 2018, 13, 024011.	5.2	96
80	Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 2018, 13, 064021.	5.2	93
81	A truly variationally consistent and symmetric mortar-based contact formulation for finite deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2018, 342, 532-560.	6.6	8
82	Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160450.	3.4	46
83	Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environmental Science & Technology, 2018, 52, 7351-7359.	10.0	124
84	Targeted policies can compensate most of the increased sustainability risks in 1.5 °C mitigation scenarios. Environmental Research Letters, 2018, 13, 064038.	5.2	48
85	Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy, 2017, 9, 541-556.	5.6	66
86	A unified approach for beam-to-beam contact. Computer Methods in Applied Mechanics and Engineering, 2017, 315, 972-1010.	6.6	57
87	Impact of LULCC on the emission of BVOCs during the 21st century. Atmospheric Environment, 2017, 165, 73-87.	4.1	11
88	Microbes and the Next Nitrogen Revolution. Environmental Science & Technology, 2017, 51, 7297-7303.	10.0	85
89	Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices. Environmental Science & Technology, 2017, 51, 365-374.	10.0	57
90	Livestock production and the water challenge of future food supply: Implications of agricultural management and dietary choices. Global Environmental Change, 2017, 47, 121-132.	7.8	34

#	Article	IF	CITATIONS
91	Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics. Global and Planetary Change, 2017, 159, 1-10.	3.5	44
92	Multiscale scenarios for nature futures. Nature Ecology and Evolution, 2017, 1, 1416-1419.	7.8	131
93	Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nature Energy, 2017, 2, 939-945.	39.5	321
94	Land-use futures in the shared socio-economic pathways. Global Environmental Change, 2017, 42, 331-345.	7.8	645
95	An implicit finite wear contact formulation based on dual mortar methods. International Journal for Numerical Methods in Engineering, 2017, 111, 325-353.	2.8	11
96	Assessing uncertainties in land cover projections. Global Change Biology, 2017, 23, 767-781.	9.5	103
97	Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 2017, 42, 297-315.	7.8	418
98	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	7.8	2,966
99	Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 2017, 14, 4829-4850.	3.3	33
100	Assessing the impacts of 1.5â€Â°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	3.6	410
101	Volumetric coupling approaches for multiphysics simulations on nonâ€matching meshes. International Journal for Numerical Methods in Engineering, 2016, 108, 1550-1576.	2.8	6
102	Hotspots of uncertainty in landâ€use and landâ€cover change projections: a globalâ€scale model comparison. Global Change Biology, 2016, 22, 3967-3983.	9.5	171
103	Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects. Environmental Research Letters, 2016, 11, 085001.	5.2	74
104	A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Computer Methods in Applied Mechanics and Engineering, 2016, 308, 377-413.	6.6	55
105	Robust strategies of climate change mitigation in interacting energy, economy and land use systems. International Journal of Climate Change Strategies and Management, 2016, 8, 732-757.	2.9	3
106	The impact of high-end climate change on agricultural welfare. Science Advances, 2016, 2, e1501452.	10.3	118
107	The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environmental Science and Policy, 2016, 64, 48-58.	4.9	58
108	Isogeometric dual mortar methods for computational contact mechanics. Computer Methods in Applied Mechanics and Engineering, 2016, 301, 259-280.	6.6	77

#	Article	IF	CITATIONS
109	A cut-cell finite volume – finite element coupling approach for fluid–structure interaction in compressible flow. Journal of Computational Physics, 2016, 307, 670-695.	3.8	51
110	Tradeâ€offs between land and water requirements for largeâ€scale bioenergy production. GCB Bioenergy, 2016, 8, 11-24.	5.6	108
111	Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns. Ecological Economics, 2016, 122, 12-24.	5.7	21
112	Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 2015, 10, 085010.	5.2	216
113	Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environmental Research Letters, 2015, 10, 094021.	5.2	84
114	Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Computational Mechanics, 2015, 55, 209-228.	4.0	63
115	Agricultural trade and tropical deforestation: interactions and related policy options. Regional Environmental Change, 2015, 15, 1757-1772.	2.9	23
116	A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 2015, 290, 314-341.	6.6	54
117	Land-Use and Carbon Cycle Responses to Moderate Climate Change: Implications for Land-Based Mitigation?. Environmental Science & Technology, 2015, 49, 6731-6739.	10.0	36
118	Australia at the crossroads. Nature, 2015, 527, 40-41.	27.8	3
119	Environmental flow provision: Implications for agricultural water and land-use at the global scale. Global Environmental Change, 2015, 30, 113-132.	7.8	47
120	A semi-smooth Newton method for orthotropic plasticity and frictional contact at finite strains. Computer Methods in Applied Mechanics and Engineering, 2015, 285, 228-254.	6.6	24
121	Bioenergy and climate change mitigation: an assessment. GCB Bioenergy, 2015, 7, 916-944.	5.6	494
122	Global Food Demand Scenarios for the 21st Century. PLoS ONE, 2015, 10, e0139201.	2.5	178
123	Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 2014, 9, 064029.	5.2	129
124	Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3274-3279.	7.1	568
125	Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 2014, 5, 3858.	12.8	356
126	Dual mortar methods for computational contact mechanics – overview and recent developments. GAMM Mitteilungen, 2014, 37, 66-84.	5.5	46

#	Article	IF	CITATIONS
127	Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 103-116.	3.9	85
128	The global economic long-term potential of modern biomass in a climate-constrained world. Environmental Research Letters, 2014, 9, 074017.	5.2	26
129	Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technological Forecasting and Social Change, 2014, 81, 236-249.	11.6	83
130	A dual mortar approach for mesh tying within a variational multiscale method for incompressible flow. International Journal for Numerical Methods in Fluids, 2014, 76, 1-27.	1.6	15
131	Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agricultural Economics (United Kingdom), 2014, 45, 69-84.	3.9	220
132	Land-use protection for climate change mitigation. Nature Climate Change, 2014, 4, 1095-1098.	18.8	164
133	Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change, 2014, 123, 495-509.	3.6	140
134	The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Climatic Change, 2014, 123, 705-718.	3.6	81
135	Bioenergy in energy transformation and climate management. Climatic Change, 2014, 123, 477-493.	3.6	154
136	An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 2014, 278, 445-478.	6.6	101
137	Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model. Ecological Modelling, 2013, 263, 233-243.	2.5	33
138	Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Computer Methods in Applied Mechanics and Engineering, 2013, 264, 67-80.	6.6	66
139	How much landâ€based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Global Change Biology, 2013, 19, 2285-2302.	9.5	454
140	Conservation of undisturbed natural forests and economic impacts on agriculture. Land Use Policy, 2013, 30, 344-354.	5.6	26
141	Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resources Research, 2013, 49, 3601-3617.	4.2	52
142	A Primal-Dual Active Set Strategy for Finite Deformation Dual Mortar Contact. Lecture Notes in Applied and Computational Mechanics, 2013, , 151-171.	2.2	2
143	Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nature Climate Change, 2012, 2, 320-327.	18.8	120
144	Mechanisms for Avoiding Deforestation and Forest Degradation. , 2012, , 287-295.		1

ALEXANDER POPP

#	Article	IF	CITATIONS
145	Land Management and Ecosystem Services How Collaborative Research Programmes Can Support Better Policies. Gaia, 2012, 21, 55-63.	0.7	24
146	Land tax: towards a multifunctional institutional tool for land reform and rangeland conservation. International Journal of Global Environmental Issues, 2012, 12, 36.	0.1	2
147	Dual Quadratic Mortar Finite Element Methods for 3D Finite Deformation Contact. SIAM Journal of Scientific Computing, 2012, 34, B421-B446.	2.8	79
148	Challenges for land system science. Land Use Policy, 2012, 29, 899-910.	5.6	320
149	Trading more food: Implications for land use, greenhouse gas emissions, and the food system. Global Environmental Change, 2012, 22, 189-209.	7.8	154
150	N ₂ O emissions from the global agricultural nitrogen cycle – current state and future scenarios. Biogeosciences, 2012, 9, 4169-4197.	3.3	96
151	An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Computational Mechanics, 2012, 49, 735-747.	4.0	40
152	Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy. Ecological Economics, 2012, 74, 64-70.	5.7	68
153	Measuring agricultural land-use intensity – A global analysis using a model-assisted approach. Ecological Modelling, 2012, 232, 109-118.	2.5	82
154	Land Use Management for Greenhouse Gas Mitigation. , 2012, , 151-159.		1
155	Food Security in a Changing Climate. , 2012, , 33-43.		1
156	Can Bioenergy Assessments Deliver?. Economics of Energy and Environmental Policy, 2012, 1, .	1.4	24
157	Agricultural Adaptation Options: Production Technology, Insurance, Trade. , 2012, , 171-178.		2
158	Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 3111-3126.	6.6	59
159	On sustainability of bioenergy production: Integrating co-emissions from agricultural intensification. Biomass and Bioenergy, 2011, 35, 4770-4780.	5.7	58
160	Finite Deformation Contact Based on a 3D Dual Mortar and Semi-Smooth Newton Approach. Lecture Notes in Applied and Computational Mechanics, 2011, , 57-77.	2.2	6
161	Bio-IGCC with CCS as a long-term mitigation option in a coupled energy-system and land-use model. Energy Procedia, 2011, 4, 2933-2940.	1.8	36
162	The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environmental Research Letters, 2011, 6, 034017.	5.2	159

#	Article	IF	CITATIONS
163	3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach. Computational Mechanics, 2010, 46, 53-67.	4.0	67
164	Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling, 2010, 221, 2188-2196.	2.5	119
165	A dual mortar approach for 3D finite deformation contact with consistent linearization. International Journal for Numerical Methods in Engineering, 2010, 83, 1428-1465.	2.8	123
166	Finite deformation frictional mortar contact using a semiâ€smooth Newton method with consistent linearization. International Journal for Numerical Methods in Engineering, 2010, 84, 543-571.	2.8	74
167	Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD. Environmental Research Letters, 2010, 5, 014013.	5.2	38
168	Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change, 2010, 20, 451-462.	7.8	323
169	Managing the Low-Carbon Transition - From Model Results to Policies. Energy Journal, 2010, 31, 223-245.	1.7	29
170	Landuse experience does qualify for adaptation to climate change. Ecological Modelling, 2009, 220, 694-702.	2.5	8
171	Ecohydrological feedback mechanisms in arid rangelands: Simulating the impacts of topography and land use. Basic and Applied Ecology, 2009, 10, 319-329.	2.7	27
172	A finite deformation mortar contact formulation using a primal–dual active set strategy. International Journal for Numerical Methods in Engineering, 2009, 79, 1354-1391.	2.8	122
173	Scaling up ecohydrological processes: Role of surface water flow in waterâ€limited landscapes. Journal of Geophysical Research, 2009, 114, .	3.3	13
174	Technological change in agriculture and the trade-offs between land expansion, intensification and international trade. IOP Conference Series: Earth and Environmental Science, 2009, 6, 512003.	0.3	0
175	Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics (United Kingdom), 2008, 39, 325-338.	3.9	160
176	Shrub encroachment affects mammalian carnivore abundance and species richness in semiarid rangelands. Acta Oecologica, 2007, 31, 86-92.	1.1	92
177	Simulating the impacts of vegetation structure on the occurrence of a small mammalian carnivore in semi-arid savanna rangelands. Ecological Modelling, 2007, 209, 136-148.	2.5	9