
Song Yun Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2155171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment. Scientific Reports, 2016, 6, 18805.	3.3	315
2	Spray-printed CNT/P3HT organic thermoelectric films and power generators. Journal of Materials Chemistry A, 2015, 3, 21428-21433.	10.3	147
3	Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators. Carbon, 2018, 133, 293-299.	10.3	128
4	Improving the thermoelectric power factor of CNT/PEDOT:PSS nanocomposite films by ethylene glycol treatment. RSC Advances, 2016, 6, 53339-53344.	3.6	99
5	Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. Journal of Materials Chemistry A, 2015, 3, 12314-12319.	10.3	94
6	High Thermoelectric Power Factor of a Diketopyrrolopyrrole-Based Low Bandgap Polymer via Finely Tuned Doping Engineering. Scientific Reports, 2017, 7, 44704.	3.3	90
7	Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 22142-22150.	8.0	80
8	High-performance flexible thermoelectric generator by control of electronic structure of directly spun carbon nanotube webs with various molecular dopants. Journal of Materials Chemistry A, 2017, 5, 15631-15639.	10.3	79
9	Enhanced Thermoelectric Performance of Bar-Coated SWCNT/P3HT Thin Films. ACS Applied Materials & Interfaces, 2015, 7, 6550-6556.	8.0	75
10	Thermoelectric fibers from well-dispersed carbon nanotube/poly(vinyliedene fluoride) pastes for fiber-based thermoelectric generators. Nanoscale, 2018, 10, 19766-19773.	5.6	71
11	Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators. Nanoscale, 2016, 8, 10885-10890.	5.6	69
12	Freely Shapable and 3D Porous Carbon Nanotube Foam Using Rapid Solvent Evaporation Method for Flexible Thermoelectric Power Generators. Advanced Energy Materials, 2019, 9, 1900914.	19.5	63
13	Engineered nanocarbon mixing for enhancing the thermoelectric properties of a telluride-PEDOT:PSS nanocomposite. Journal of Materials Chemistry A, 2017, 5, 17867-17873.	10.3	55
14	Preparation of Highly Stable Black Phosphorus by Gold Decoration for Highâ€Performance Thermoelectric Generators. Advanced Functional Materials, 2018, 28, 1800532.	14.9	49
15	Soluble oxide gate dielectrics prepared using the self-combustion reaction for high-performance thin-film transistors. Journal of Materials Chemistry C, 2014, 2, 5695-5703.	5.5	48
16	Improved interaction between semiconducting polymer and carbon nanotubes in thermoelectric composites through covalent grafting. Carbon, 2017, 124, 662-668.	10.3	35
17	Effect of film thickness and crystallinity on the thermoelectric properties of doped P3HT films. RSC Advances, 2015, 5, 11385-11391.	3.6	32
18	Highly efficient and air stable thermoelectric devices of poly(3-hexylthiophene) by dual doping of Au metal precursors. Nano Energy, 2021, 82, 105681.	16.0	27

Song Yun Cho

#	Article	IF	CITATIONS
19	Enhanced Thermoelectric Performance of Conjugated Polymer/CNT Nanocomposites by Modulating the Potential Barrier Difference between Conjugated Polymer and CNT. ACS Applied Electronic Materials, 2019, 1, 1282-1289.	4.3	26
20	Highly Flexible and Durable Thermoelectric Power Generator Using CNT/PDMS Foam by Rapid Solvent Evaporation. Small, 2022, 18, e2106108.	10.0	23
21	Facile Preparation of Highly Conductive Metal Oxides by Self-Combustion for Solution-Processed Thermoelectric Generators. ACS Applied Materials & amp; Interfaces, 2016, 8, 5216-5223.	8.0	22
22	Elastic thermoelectric sponge for pressure-induced enhancement of power generation. Nano Energy, 2020, 74, 104824.	16.0	17
23	Influence of the incorporation of small conjugated molecules on the thermoelectric properties of carbon nanotubes. Organic Electronics, 2018, 57, 165-170.	2.6	15
24	Highly Integrated and Flexible Thermoelectric Module Fabricated by Brush-Cast Doping of a Highly Aligned Carbon Nanotube Web. ACS Applied Energy Materials, 2019, 2, 1093-1101.	5.1	15
25	Proton Conducting Perhydropolysilazane-Derived Gate Dielectric for Solution-Processed Metal Oxide-Based Thin-Film Transistors, ACS Applied Materials & app: Interfaces, 2020, 12, 15396-15405	8.0	13