
Michael B Gorin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2154536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FINDINGS AND VISUAL PROGNOSIS IN TWO PATIENTS WITH POSTERIOR MICROPHTHALMOS. Retinal Cases and Brief Reports, 2022, 16, 253-257.	0.3	2
2	Assessing Variant Causality and Severity Using Retinal Pigment Epithelial Cells Derived from Stargardt Disease Patients. Translational Vision Science and Technology, 2022, 11, 33.	1.1	3
3	A CASE OF INTRARETINAL PERIPAPILLARY NEOVASCULARIZATION IN ABCA4-RELATED RETINOPATHY. Retinal Cases and Brief Reports, 2021, 15, 5-9.	0.3	1
4	Gene-Based Association Testing of Dichotomous Traits With Generalized Functional Linear Mixed Models Using Extended Pedigrees: Applications to Age-Related Macular Degeneration. Journal of the American Statistical Association, 2021, 116, 531-545.	1.8	3
5	Assessing the Clinical Utility of Expanded Macular OCTs Using Machine Learning. Translational Vision Science and Technology, 2021, 10, 32.	1.1	11
6	Characterization of the Spectrum of Ophthalmic Changes in Patients With Alagille Syndrome. , 2021, 62, 27.		11
7	Expanding the clinical phenotype in patients with disease causing variants associated with atypical Usher syndrome. Ophthalmic Genetics, 2021, 42, 664-673.	0.5	14
8	The Associations of Obstructive Sleep Apnea and Eye Disorders: Potential Insights into Pathogenesis and Treatment. Current Sleep Medicine Reports, 2021, 7, 65-79.	0.7	2
9	Genotype–Phenotype Analysis of Atrophic Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 1059-1060.	1.2	0
10	Predictive genetics for AMD: Hype and hopes for genetics-based strategies for treatment and prevention. Experimental Eye Research, 2020, 191, 107894.	1.2	11
11	Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genetics in Medicine, 2020, 22, 1235-1246.	1.1	92
12	Mutations in the Kinesin-2 Motor KIF3B Cause an Autosomal-Dominant Ciliopathy. American Journal of Human Genetics, 2020, 106, 893-904.	2.6	29
13	Novel mutation in <i>SLC4A7</i> gene causing autosomal recessive progressive rod-cone dystrophy. Ophthalmic Genetics, 2020, 41, 386-389.	0.5	5
14	Three patients with injection of intravitreal vascular endothelial growth factor inhibitors and subsequent exacerbation of chronic proteinuria and hypertension. CKJ: Clinical Kidney Journal, 2019, 12, 92-100.	1.4	50
15	A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nature Communications, 2019, 10, 3347.	5.8	192
16	Missense variants in the conserved transmembrane M2 protein domain of KCNJ13 associated with retinovascular changes in humans and zebrafish. Experimental Eye Research, 2019, 189, 107852.	1.2	13
17	Utility of In Vitro Mutagenesis of RPE65 Protein for Verification of Mutational Pathogenicity Before Gene Therapy. JAMA Ophthalmology, 2019, 137, 1381.	1.4	11
18	When Genetics Can Point Researchers and Clinicians in New Directions. JAMA Ophthalmology, 2019, 137, 876.	1.4	2

MICHAEL B GORIN

#	Article	IF	CITATIONS
19	VON HIPPEL–LINDAU DISEASE. Retina, 2019, 39, 2243-2253.	1.0	38
20	Evaluation of the Choroid in Eyes With Retinitis Pigmentosa and Cystoid Macular Edema. , 2019, 60, 5000.		30
21	MANAGEMENT OF RETINAL HEMANGIOBLASTOMA IN VON HIPPEL–LINDAU DISEASE. Retina, 2019, 39, 2254-2263.	1.0	38
22	Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Decrease the Development of Severe Experimental Autoimmune Uveitis in B10.RIII Mice. Ocular Immunology and Inflammation, 2018, 26, 1228-1236.	1.0	7
23	TD-04â€Plaquenil discontinuation is associated with increased damage accumulation in SLE. , 2018, , .		О
24	Identification and population history of CYP4V2 mutations in patients with Bietti crystalline corneoretinal dystrophy. European Journal of Human Genetics, 2017, 25, 461-471.	1.4	23
25	Genetic risk models: Influence of model size on risk estimates and precision. Genetic Epidemiology, 2017, 41, 282-296.	0.6	4
26	Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis. American Journal of Ophthalmology Case Reports, 2017, 7, 14-19.	0.4	31
27	Peripheral Sensory Neurons Expressing Melanopsin Respond to Light. Frontiers in Neural Circuits, 2016, 10, 60.	1.4	50
28	De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa. PLoS ONE, 2016, 11, e0150944.	1.1	35
29	Challenges confronting precision medicine in the context of inherited retinal disorders. Expert Review of Precision Medicine and Drug Development, 2016, 1, 195-205.	0.4	5
30	Assessing Deep Retinal Capillary Ischemia in Paracentral Acute Middle Maculopathy by Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2016, 162, 121-132.e1.	1.7	143
31	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	9.4	1,167
32	Light aversion and corneal mechanical sensitivity are altered by intrinscally photosensitive retinal ganglion cells in a mouse model ofÂcorneal surface damage. Experimental Eye Research, 2015, 137, 57-62.	1.2	30
33	dbVOR: a database system for importing pedigree, phenotype and genotype data and exporting selected subsets. BMC Bioinformatics, 2015, 16, 91.	1.2	1
34	Genetic ME–a visualization application for merging and editing pedigrees for genetic studies. BMC Research Notes, 2015, 8, 241.	0.6	0
35	Endophenotypes for Age-Related Macular Degeneration: Extending Our Reach into the Preclinical Stages of Disease. Journal of Clinical Medicine, 2014, 3, 1335-1356.	1.0	11
36	Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Human Molecular Genetics, 2014, 23, 5827-5837.	1.4	52

MICHAEL B GORIN

#	Article	lF	CITATIONS
37	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	9.4	687
38	Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nature Genetics, 2013, 45, 1375-1379.	9.4	158
39	Genetic insights into age-related macular degeneration: Controversies addressing risk, causality, and therapeutics. Molecular Aspects of Medicine, 2012, 33, 467-486.	2.7	91
40	Associations between Genetic Polymorphisms of Insulin-like Growth Factor Axis Genes and Risk for Age-Related Macular Degeneration. , 2011, 52, 9099.		21
41	Dissection of Chromosome 16p12 Linkage Peak Suggests a Possible Role forCACNG3Variants in Age-Related Macular Degeneration Susceptibility. , 2011, 52, 1748.		10
42	Genetic variants near <i>TIMP3</i> and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7401-7406.	3.3	475
43	Interpretation of Genetic Association Studies: Markers with Replicated Highly Significant Odds Ratios May Be Poor Classifiers. PLoS Genetics, 2009, 5, e1000337.	1.5	211
44	C2 and CFB Genes in Age-Related Maculopathy and Joint Action with CFH and LOC387715 Genes. PLoS ONE, 2008, 3, e2199.	1.1	85
45	A Clinician's View of the Molecular Genetics of Age-Related Maculopathy. JAMA Ophthalmology, 2007, 125, 21.	2.6	34
46	Candidate gene analysis suggests a role for fatty acid biosynthesis and regulation of the complement system in the etiology of age-related maculopathy. Human Molecular Genetics, 2005, 14, 1991-2002.	1.4	143
47	Susceptibility Genes for Age-Related Maculopathy on Chromosome 10q26. American Journal of Human Genetics, 2005, 77, 389-407.	2.6	515
48	Meta-analysis of genome scans of age-related macular degeneration. Human Molecular Genetics, 2005, 14, 2257-2264.	1.4	224
49	Age-Related Maculopathy: A Genomewide Scan with Continued Evidence of Susceptibility Loci within the 1q31, 10q26, and 17q25 Regions. American Journal of Human Genetics, 2004, 75, 174-189.	2.6	174
50	A pooled case-control study of the apolipoprotein E (APOE) gene in age-related maculopathy. Ophthalmic Genetics, 2002, 23, 209-223.	0.5	136
51	Age-related maculopathy: an expanded genome-wide scan with evidence of susceptibility loci within the 1q31 and 17q25 regions. American Journal of Ophthalmology, 2001, 132, 682-692.	1.7	132
52	Cloning and characterization of a cow beta crystallin cDNA. Current Eye Research, 1984, 3, 939-948.	0.7	40