Enrique Lanuza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2154535/publications.pdf

Version: 2024-02-01

126907 182427 3,155 81 33 citations h-index papers

g-index 84 84 84 2721 docs citations times ranked citing authors all docs

51

#	Article	IF	Citations
1	Structural progression of Alzheimer's disease over decades: the MRI staging scheme. Brain Communications, 2022, 4, fcac109.	3.3	35
2	Becoming a mother shifts the activity of the social and motivation brain networks in mice. IScience, 2022, 25, 104525.	4.1	2
3	Maternal Motivation: Exploring the Roles of Prolactin and Pup Stimuli. Neuroendocrinology, 2021, 111, 805-830.	2.5	12
4	Motherhoodâ€induced gene expression in the mouse medial amygdala: Changes induced by pregnancy and lactation but not by pup stimuli. FASEB Journal, 2021, 35, e21806.	0.5	3
5	Integrating pheromonal and spatial information in the amygdalo-hippocampal network. Nature Communications, 2021, 12, 5286.	12.8	11
6	Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: A <scp>MRI</scp> analysis. Human Brain Mapping, 2021, 42, 1287-1303.	3.6	19
7	Male-specific features are reduced in Mecp2-null mice: analyses of vasopressinergic innervation, pheromone production and social behaviour. Brain Structure and Function, 2020, 225, 2219-2238.	2.3	6
8	Pregnancy Changes the Response of the Vomeronasal and Olfactory Systems to Pups in Mice. Frontiers in Cellular Neuroscience, 2020, 14, 593309.	3.7	11
9	pBrain: A novel pipeline for Parkinson related brain structure segmentation. Neurolmage: Clinical, 2020, 25, 102184.	2.7	11
10	Lifespan Changes of the Human Brain In Alzheimer's Disease. Scientific Reports, 2019, 9, 3998.	3.3	113
11	Lack of MeCP2 leads to region-specific increase of doublecortin in the olfactory system. Brain Structure and Function, 2019, 224, 1647-1658.	2.3	8
12	The maternal hormone in the male brain: Sexually dimorphic distribution of prolactin signalling in the mouse brain. PLoS ONE, 2018, 13, e0208960.	2.5	21
13	Evolution of vertebrate survival circuits. Current Opinion in Behavioral Sciences, 2018, 24, 113-123.	3.9	13
14	Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice. Brain Structure and Function, 2017, 222, 895-921.	2.3	43
15	Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse. Journal of Comparative Neurology, 2017, 525, 2929-2954.	1.6	19
16	Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice. Scientific Reports, 2017, 7, 9924.	3.3	25
17	Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis. Human Brain Mapping, 2017, 38, 5501-5518.	3.6	209
18	Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats. Frontiers in Neuroanatomy, $2017, 11, 8$.	1.7	4

#	Article	IF	CITATIONS
19	Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice. Frontiers in Neuroanatomy, 2016, 10, 125.	1.7	26
20	Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Structure and Function, 2016, 221, 1033-1065.	2.3	67
21	Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice. Brain Structure and Function, 2016, 221, 3445-3473.	2.3	45
22	Wired for motherhood: induction of maternal care but not maternal aggression in virgin female CD1 mice. Frontiers in Behavioral Neuroscience, 2015, 9, 197.	2.0	35
23	Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice. Frontiers in Neuroscience, 2015, 9, 336.	2.8	12
24	From sexual attraction to maternal aggression: When pheromones change their behavioural significance. Hormones and Behavior, 2015, 68, 65-76.	2.1	56
25	Amygdala. , 2015, , 441-490.		21
26	Sex pheromones are not always attractive: changes induced by learning and illness in mice. Animal Behaviour, 2014, 97, 265-272.	1.9	16
27	The vomeronasal cortex – afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice. European Journal of Neuroscience, 2014, 39, 141-158.	2.6	49
28	Focal lesions within the ventral striato-pallidum abolish attraction for male chemosignals in female mice. Behavioural Brain Research, 2014, 259, 292-296.	2.2	32
29	Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice. Brain Structure and Function, 2014, 219, 1055-1081.	2.3	31
30	Of Pheromones and Kairomones: What Receptors Mediate Innate Emotional Responses?. Anatomical Record, 2013, 296, 1346-1363.	1.4	90
31	Neural Substrate to Associate Odorants and Pheromones: Convergence of Projections from the Main and Accessory Olfactory Bulbs in Mice. , 2013, , 3-16.		11
32	Lesions of the dopaminergic innervation of the nucleus accumbens medial shell delay the generation of preference for sucrose, but not of sexual pheromones. Behavioural Brain Research, 2012, 226, 538-547.	2.2	20
33	Piriform Cortex and Amygdala. , 2012, , 140-172.		30
34	Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Frontiers in Neuroanatomy, 2012, 6, 33.	1.7	123
35	Cladistic Analysis of Olfactory and Vomeronasal Systems. Frontiers in Neuroanatomy, 2011, 5, 3.	1.7	35
36	Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Frontiers in Neuroanatomy, 2011, 5, 54.	1.7	38

#	Article	IF	CITATIONS
37	Chemosensory Function of the Amygdala. Vitamins and Hormones, 2010, 83, 165-196.	1.7	37
38	Refining the dual olfactory hypothesis: Pheromone reward and odour experience. Behavioural Brain Research, 2009, 200, 277-286.	2.2	114
39	Role of nitric oxide in pheromone-mediated intraspecific communication in mice. Physiology and Behavior, 2009, 98, 608-613.	2.1	7
40	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.		0
41	Role of the vomeronasal system in intersexual attraction in female mice. Neuroscience, 2008, 153, 383-395.	2.3	45
42	Unconditioned stimulus pathways to the amygdala: Effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala. Neuroscience, 2008, 155, 959-968.	2.3	66
43	Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Research Bulletin, 2008, 75, 206-213.	3.0	48
44	Vomeronasal inputs to the rodent ventral striatum. Brain Research Bulletin, 2008, 75, 467-473.	3.0	38
45	Sexual pheromones and the evolution of the reward system of the brain: The chemosensory function of the amygdala. Brain Research Bulletin, 2008, 75, 460-466.	3.0	35
46	Sex versus sweet: Opposite effects of opioid drugs on the reward of sucrose and sexual pheromones Behavioral Neuroscience, 2008, 122, 416-425.	1.2	16
47	Have Sexual Pheromones Their Own Reward System in the Brain of Female Mice?., 2008, , 261-270.		2
48	Effects of dopaminergic drugs on innate pheromone-mediated reward in female mice: A new case of dopamine-independent "liking.". Behavioral Neuroscience, 2007, 121, 920-932.	1.2	25
49	Evolution of the Amygdala in Vertebrates. , 2007, , 255-334.		36
50	Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neuroscience, 2007, 8, 103.	1.9	58
51	Selective dopaminergic lesions of the ventral tegmental area impair preference for sucrose but not for male sexual pheromones in female mice. European Journal of Neuroscience, 2006, 24, 885-893.	2.6	46
52	Intraspecific Communication Through Chemical Signals in Female Mice: Reinforcing Properties of Involatile Male Sexual Pheromones. Chemical Senses, 2006, 32, 139-148.	2.0	58
53	Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala. European Journal of Neuroscience, 2005, 21, 2186-2198.	2.6	86
54	Chemoarchitecture and afferent connections of the "olfactostriatum― a specialized vomeronasal structure within the basal ganglia of snakes. Journal of Chemical Neuroanatomy, 2005, 29, 49-69.	2.1	12

#	Article	IF	CITATIONS
55	Efferent connections of the "olfactostriatum― A specialized vomeronasal structure within the basal ganglia of snakes. Journal of Chemical Neuroanatomy, 2005, 29, 217-226.	2.1	14
56	The "olfactostriatum―of snakes: A basal ganglia vomeronasal structure in tetrapods. Brain Research Bulletin, 2005, 66, 337-340.	3.0	5
57	Distribution of corticotropin-releasing factor-immunoreactive neurons in the central nervous system of the domestic chicken and Japanese quail. Journal of Comparative Neurology, 2004, 469, 559-580.	1.6	47
58	Amygdalostriatal projections in reptiles: A tractâ€tracing study in the lizard <i>Podarcis hispanica</i> Journal of Comparative Neurology, 2004, 479, 287-308.	1.6	30
59	Attraction to male pheromones and sexual behaviour show different regulatory mechanisms in female mice. Physiology and Behavior, 2004, 81, 427-434.	2.1	39
60	Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning. Neuroscience, 2004, 125, 305-315.	2.3	88
61	Retinal ganglion cells projecting to the optic tectum and visual thalamus of lizards. Visual Neuroscience, 2002, 19, 575-581.	1.0	6
62	The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structure. Brain Research Bulletin, 2002, 57, 463-469.	3.0	121
63	Attractive properties of sexual pheromones in mice. Physiology and Behavior, 2002, 77, 167-176.	2.1	108
64	Distribution of PSA-NCAM expression in the amygdala of the adult rat. Neuroscience, 2002, 113, 479-484.	2.3	68
65	Neural substrates for processing chemosensory information in snakes. Brain Research Bulletin, 2002, 57, 543-546.	3.0	21
66	Striato-amygdaloid transition area lesions reduce the duration of tonic immobility in the lizard Podarcis hispanica. Brain Research Bulletin, 2002, 57, 537-541.	3.0	28
67	Understanding the basic circuitry of the cerebral hemispheres: the case of lizards and its implications in the evolution of the telencephalon. Brain Research Bulletin, 2002, 57, 471-473.	3.0	21
68	Distribution of calcitonin geneâ€related peptideâ€like immunoreactivity in the brain of the lizard <i>Podarcis hispanica</i> . Journal of Comparative Neurology, 2002, 447, 99-113.	1.6	16
69	Distribution of CGRP-like immunoreactivity in the chick and quail brain., 2000, 421, 515-532.		41
70	Afferents to the red nucleus in the lizardPodarcis hispanica: Putative pathways for visuomotor integration. Journal of Comparative Neurology, 1999, 411, 35-55.	1.6	12
71	Organization of the ophidian amygdala: Chemosensory pathways to the hypothalamus., 1999, 412, 51-68.		42
72	What is the amygdala? A comparative approach. Trends in Neurosciences, 1999, 22, 207.	8.6	14

#	Article	IF	CITATIONS
73	Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion. Journal of Comparative Neurology, 1998, 401, 525-548.	1.6	43
74	Identification of the reptilian basolateral amygdala: an anatomical investigation of the afferents to the posterior dorsal ventricular ridge of the lizard <i>Podarcis hispanica</i>Journal of Neuroscience, 1998, 10, 3517-3534.	2.6	74
75	Efferents and Centrifugal Afferents of the Main and Accessory Olfactory Bulbs in the Snake & lt;i>Thamnophis sirtalis. Brain, Behavior and Evolution, 1998, 51, 1-22.	1.7	65
76	Ascending projections from the optic tectum in the lizard Podarcis hispanica. Visual Neuroscience, 1998, 15, 459-475.	1.0	14
77	A Lacertilian Dorsal Retinorecipient Thalamus: A Re-Investigation in the Old-World Lizard & lt;i>Podarcis hispanica (Part 1 of 2). Brain, Behavior and Evolution, 1997, 50, 313-323.	1.7	64
78	Septal complex of the telencephalon of the lizardPodarcis hispanica. II. afferent connections. Journal of Comparative Neurology, 1997, 383, 489-511.	1.6	37
79	Amygdalo-hypothalamic projections in the lizardPodarcis hispanica: A combined anterograde and retrograde tracing study. Journal of Comparative Neurology, 1997, 384, 537-555.	1.6	46
80	Afferent and efferent connections of the nucleus sphericus in the snakeThamnophis sirtalis: Convergence of olfactory and vomeronasal information in the lateral cortex and the amygdala., 1997, 385, 627-640.		53
81	Catecholaminergic interplexiform cells in the retina of lizards. Vision Research, 1996, 36, 1349-1355.	1.4	6