
Daniel J Schell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2154443/publications.pdf Version: 2024-02-01

DANIEL I SCHELL

#	Article	IF	CITATIONS
1	Assessing pretreatment reactor scaling through empirical analysis. Biotechnology for Biofuels, 2016, 9, 213.	6.2	16
2	Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater. Biochemical Engineering Journal, 2016, 116, 85-94.	3.6	50
3	Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass. Bioresource Technology, 2016, 205, 153-158.	9.6	16
4	Pilot-Scale Batch Alkaline Pretreatment of Corn Stover. ACS Sustainable Chemistry and Engineering, 2016, 4, 944-956.	6.7	29
5	Performance and techno-economic assessment of several solid–liquid separation technologies for processing dilute-acid pretreated corn stover. Bioresource Technology, 2014, 167, 291-296.	9.6	20
6	Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover. Biotechnology for Biofuels, 2014, 7, 23.	6.2	62
7	Degradation of Carbohydrates during Dilute Sulfuric Acid Pretreatment Can Interfere with Lignin Measurements in Solid Residues. Journal of Agricultural and Food Chemistry, 2013, 61, 3286-3292.	5.2	24
8	Conversion of Residual Organics in Corn Stover-Derived Biorefinery Stream to Bioenergy via a Microbial Fuel Cell. Environmental Science & Technology, 2013, 47, 642-648.	10.0	50
9	Removal of Acidic Impurities from Corn Stover Hydrolysate Liquor by Resin Wafer Based Electrodeionization. Industrial & Engineering Chemistry Research, 2013, 52, 13777-13784.	3.7	24
10	Membrane extraction for detoxification of biomass hydrolysates. Bioresource Technology, 2012, 111, 248-254.	9.6	36
11	Fermentation of Reactive-Membrane-Extracted and Ammonium-Hydroxide-Conditioned Dilute-Acid-Pretreated Corn Stover. Applied Biochemistry and Biotechnology, 2012, 166, 470-478.	2.9	13
12	Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresource Technology, 2011, 102, 1240-1245.	9.6	43
13	An economic comparison of different fermentation configurations to convert corn stover to ethanol using <i>Z. mobilis</i> and <i>Saccharomyces</i> . Biotechnology Progress, 2010, 26, 64-72.	2.6	86
14	Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnology Progress, 2010, 26, 1245-1251.	2.6	88
15	Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol. Biotechnology and Bioengineering, 2010, 105, 992-996.	3.3	10
16	Detoxification of biomass hydrolysates by reactive membrane extraction. Journal of Membrane Science, 2010, 348, 6-12.	8.2	41
17	Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresource Technology, 2010, 101, 674-678.	9.6	102
18	Mass Spectral Analyses of Corn Stover Prehydrolysates To Assess Conditioning Processes. Journal of Agricultural and Food Chemistry, 2010, 58, 12642-12649.	5.2	6

DANIEL J SCHELL

#	Article	IF	CITATIONS
19	Comparative study of corn stover pretreated by dilute acid and cellulose solventâ€based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering, 2009, 103, 715-724.	3.3	191
20	Model-Based Fed-Batch for High-Solids Enzymatic Cellulose Hydrolysis. Applied Biochemistry and Biotechnology, 2009, 152, 88-107.	2.9	196
21	Rheology of corn stover slurries at high solids concentrations – Effects of saccharification and particle size. Bioresource Technology, 2009, 100, 925-934.	9.6	174
22	Membrane extraction for removal of acetic acid from biomass hydrolysates. Journal of Membrane Science, 2008, 322, 189-195.	8.2	66
23	Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bioresource Technology, 2008, 99, 7354-7362.	9.6	61
24	Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technology, 2008, 99, 8940-8948.	9.6	280
25	Methodological analysis for determination of enzymatic digestibility of cellulosic materials. Biotechnology and Bioengineering, 2007, 96, 188-194.	3.3	27
26	Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresource Technology, 2007, 98, 2942-2948.	9.6	60
27	Conditioning hemicellulose hydrolysates for fermentation: Effects of overliming pH on sugar and ethanol yields. Process Biochemistry, 2006, 41, 1806-1811.	3.7	104
28	Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnology Letters, 2004, 26, 321-325.	2.2	72
29	A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresource Technology, 2004, 91, 179-188.	9.6	103
30	Dilute-Sulfuric Acid Pretreatment of Corn Stover in Pilot-Scale Reactor: Investigation of Yields, Kinetics, and Enzymatic Digestibilities of Solids. Applied Biochemistry and Biotechnology, 2003, 105, 69-86.	2.9	378
31	Dilute-Sulfuric Acid Pretreatment of Corn Stover in Pilot-Scale Reactor. , 2003, , 69-85.		45
32	Carbon Mass Balance Evaluation of Cellulase Production on Soluble and Insoluble Substrates. Biotechnology Progress, 2002, 18, 1400-1407.	2.6	13
33	Use of Measurement Uncertainty Analysis to Assess Accuracy of Carbon Mass Balance Closure for a Cellulase Production Process. Applied Biochemistry and Biotechnology, 2002, 98-100, 509-524.	2.9	7
34	Influence Of Operating Conditions and Vessel Size On Oxygen Transfer During Cellulase Production. Applied Biochemistry and Biotechnology, 2001, 91-93, 627-642.	2.9	22
35	Modeling the Enzymatic Hydrolysis of Dilute-Acid Pretreated Douglas Fir. Applied Biochemistry and Biotechnology, 1999, 77, 67-82.	2.9	37
36	Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Applied Biochemistry and Biotechnology, 1998, 70-72, 17-24.	2.9	30

DANIEL J SCHELL

#	Article	IF	CITATIONS
37	Vendor test studies supporting the design of a biomass-to-ethanol pilot plant. Applied Biochemistry and Biotechnology, 1995, 51-52, 549-557.	2.9	4
38	Milling of lignocellulosic biomass. Applied Biochemistry and Biotechnology, 1994, 45-46, 159-168.	2.9	137
39	Dilute sulfuric acid pretreatment of corn stover at high solids concentrations. Applied Biochemistry and Biotechnology, 1992, 34-35, 659-665.	2.9	36
40	Changes in physical and chemical properties of pretreated wheat straw during hydrolysis with cellulase. Biotechnology Letters, 1989, 11, 745-748.	2.2	7
41	High pressure solids feeding using a lockhopper system: Design and operating experience. Applied Biochemistry and Biotechnology, 1988, 17, 73-87.	2.9	5