Joseph Zaia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2154074/publications.pdf

Version: 2024-02-01

36271 53190 8,596 164 51 85 h-index citations g-index papers 177 177 177 7420 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mass spectrometry of oligosaccharides. Mass Spectrometry Reviews, 2004, 23, 161-227.	2.8	763
2	The Monoclonal Antibody SH-2, Raised against Human Mesenchymal Stem Cells, Recognizes an Epitope on Endoglin (CD105). Biochemical and Biophysical Research Communications, 1999, 265, 134-139.	1.0	361
3	Mesenchymal Stem Cell Surface Antigen SB-10 Corresponds to Activated Leukocyte Cell Adhesion Molecule and Is Involved in Osteogenic Differentiation. Journal of Bone and Mineral Research, 1998, 13, 655-663.	3.1	230
4	The SH-3 and SH-4 Antibodies Recognize Distinct Epitopes on CD73 from Human Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 2001, 289, 519-524.	1.0	226
5	Mass Spectrometry and the Emerging Field of Glycomics. Chemistry and Biology, 2008, 15, 881-892.	6.2	214
6	Mass Spectrometry and Glycomics. OMICS A Journal of Integrative Biology, 2010, 14, 401-418.	1.0	208
7	Effective Use of Mass Spectrometry for Glycan and Glycopeptide Structural Analysis. Analytical Chemistry, 2012, 84, 3040-3048.	3.2	173
8	Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein. Cancer Cell, 2015, 28, 500-514.	7.7	169
9	Alternative O-Glycosylation/O-Phosphorylation of the Murine Estrogen Receptor βâ€. Biochemistry, 2000, 39, 11609-11620.	1.2	163
10	Tandem Mass Spectrometry of Sulfated Heparin-Like Glycosaminoglycan Oligosaccharides. Analytical Chemistry, 2003, 75, 2445-2455.	3.2	140
11	Compositional Analysis of Glycosaminoglycans by Electrospray Mass Spectrometry. Analytical Chemistry, 2001, 73, 233-239.	3.2	139
12	GlycReSoft: A Software Package for Automated Recognition of Glycans from LC/MS Data. PLoS ONE, 2012, 7, e45474.	1.1	126
13	Organ-specific Heparan Sulfate Structural Phenotypes. Journal of Biological Chemistry, 2009, 284, 11806-11814.	1.6	118
14	MIRAGE: The minimum information required for a glycomics experiment. Glycobiology, 2014, 24, 402-406.	1.3	116
15	Glycoform Quantification of Chondroitin/Dermatan Sulfate Using a Liquid Chromatographyâ^'Tandem Mass Spectrometry Platform. Biochemistry, 2006, 45, 2350-2361.	1.2	112
16	Onâ€line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrometry Reviews, 2009, 28, 254-272.	2.8	112
17	The Minimum Information Required for a Glycomics Experiment (MIRAGE) Project: Improving the Standards for Reporting Mass-spectrometry-based Glycoanalytic Data. Molecular and Cellular Proteomics, 2013, 12, 991-995.	2.5	109
18	Proteomic and biological profiling of extracellular vesicles from Alzheimer's disease human brain tissues. Alzheimer's and Dementia, 2020, 16, 896-907.	0.4	105

#	Article	IF	Citations
19	Top-Down Approach for the Direct Characterization of Low Molecular Weight Heparins Using LC-FT-MS. Analytical Chemistry, 2012, 84, 8822-8829.	3.2	103
20	Interlaboratory Study on Differential Analysis of Protein Glycosylation by Mass Spectrometry: The ABRF Glycoprotein Research Multi-Institutional Study 2012. Molecular and Cellular Proteomics, 2013, 12, 2935-2951.	2.5	103
21	Tandem mass spectrometric strategies for determination of sulfation positions and uronic acid epimerization in chondroitin sulfate oligosaccharides. Journal of the American Society for Mass Spectrometry, 2003, 14, 1270-1281.	1.2	98
22	Tags for the Stable Isotopic Labeling of Carbohydrates and Quantitative Analysis by Mass Spectrometry. Analytical Chemistry, 2007, 79, 5777-5784.	3.2	98
23	Retention of Thiol Protons in Two Classes of Protein Zinc Ion Coordination Centers. Journal of the American Chemical Society, 1996, 118, 12242-12243.	6.6	95
24	Microfluidic Capillary Electrophoresis–Mass Spectrometry for Analysis of Monosaccharides, Oligosaccharides, and Glycopeptides. Analytical Chemistry, 2017, 89, 6645-6655.	3.2	95
25	Tandem Mass Spectrometric Determination of the 4S/6S Sulfation Sequence in Chondroitin Sulfate Oligosaccharides. Analytical Chemistry, 2001, 73, 6030-6039.	3.2	94
26	A chipâ€based amideâ€HILIC LC/MS platform for glycosaminoglycan glycomics profiling. Proteomics, 2009, 9, 686-695.	1.3	92
27	Comparative glycomics of connective tissue glycosaminoglycans. Proteomics, 2008, 8, 1384-1397.	1.3	88
28	NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Molecular and Cellular Proteomics, 2020, 19, 11-30.	2.5	87
29	The correct molecular weight of myoglobin, a common calibrant for mass spectrometry. Rapid Communications in Mass Spectrometry, 1992, 6, 32-36.	0.7	85
30	Integrated Omics and Computational Glycobiology Reveal Structural Basis for Influenza A Virus Glycan Microheterogeneity and Host Interactions. Molecular and Cellular Proteomics, 2016, 15, 1895-1912.	2.5	85
31	GlyTouCan 1.0 – The international glycan structure repository. Nucleic Acids Research, 2016, 44, D1237-D1242.	6.5	83
32	Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Analytical and Bioanalytical Chemistry, 2017, 409, 379-394.	1.9	83
33	Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrometry Reviews, 2017, 36, 475-498.	2.8	82
34	Monitoring metal ion flux in reactions of metallothionein and drugâ€modified metallothionein by electrospray mass spectrometry. Protein Science, 1998, 7, 2398-2404.	3.1	80
35	A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconjugate Journal, 2016, 33, 285-296.	1.4	74
36	Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nature Methods, 2021, 18, 1304-1316.	9.0	74

#	Article	IF	CITATIONS
37	Glycosaminoglycan Glycomics Using Mass Spectrometry. Molecular and Cellular Proteomics, 2013, 12, 885-892.	2.5	72
38	A tandem mass spectrometric approach to determination of chondroitin/dermatan sulfate oligosaccharide glycoforms. Glycobiology, 2006, 16, 502-513.	1.3	70
39	The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology, 2017, 27, 280-284.	1.3	69
40	Comparative Glycomics Using a Tetraplex Stable-Isotope Coded Tag. Analytical Chemistry, 2010, 82, 3023-3031.	3.2	64
41	Disaccharide Analysis of Glycosaminoglycans Using Hydrophilic Interaction Chromatography and Mass Spectrometry. Analytical Chemistry, 2013, 85, 1138-1145.	3.2	64
42	Influence of Charge State on Product Ion Mass Spectra and the Determination of 4S/6S Sulfation Sequence of Chondroitin Sulfate Oligosaccharides. Analytical Chemistry, 2002, 74, 3760-3771.	3.2	62
43	The minimum information required for a glycomics experiment (MIRAGE) project: sample preparation guidelines for reliable reporting of glycomics datasets. Glycobiology, 2016, 26, 907-910.	1.3	62
44	Competing fragmentation processes in tandem mass spectra of heparin-like glycosaminoglycans. Journal of the American Society for Mass Spectrometry, 2004, 15, 1534-1544.	1.2	60
45	Optimized extraction of glycosaminoglycans from normal and osteoarthritic cartilage for glycomics profiling. Glycobiology, 2007, 17, 25-35.	1.3	59
46	WT1-Dependent Sulfatase Expression Maintains the Normal Glomerular Filtration Barrier. Journal of the American Society of Nephrology: JASN, 2011, 22, 1286-1296.	3.0	58
47	Dermatan Sulfate Is Involved in the Tumorigenic Properties of Esophagus Squamous Cell Carcinoma. Cancer Research, 2012, 72, 1943-1952.	0.4	58
48	Improved Hydrophilic Interaction Chromatography LC/MS of Heparinoids Using a Chip with Postcolumn Makeup Flow. Analytical Chemistry, 2010, 82, 516-522.	3.2	55
49	Construction of a Database of Collision Cross Section Values for Glycopeptides, Glycans, and Peptides Determined by IM-MS. Analytical Chemistry, 2017, 89, 4452-4460.	3.2	55
50	The role of mobile protons in negative ion CID of oligosaccharides. Journal of the American Society for Mass Spectrometry, 2007, 18, 952-960.	1,2	54
51	Why Glycosylation Matters in Building a Better Flu Vaccine. Molecular and Cellular Proteomics, 2019, 18, 2348-2358.	2.5	54
52	Characterization and Quantification of Highly Sulfated Glycosaminoglycan Isomers by Gated-Trapped Ion Mobility Spectrometry Negative Electron Transfer Dissociation MS/MS. Analytical Chemistry, 2019, 91, 2994-3001.	3.2	53
53	Characterization of Heparin Oligosaccharides Binding Specifically to Antithrombin III Using Mass Spectrometry. Biochemistry, 2008, 47, 3155-3161.	1.2	50
54	Heparan Sulfate 6-O-endosulfatases (Sulfs) Coordinate the Wnt Signaling Pathways to Regulate Myoblast Fusion during Skeletal Muscle Regeneration. Journal of Biological Chemistry, 2012, 287, 32651-32664.	1.6	50

#	Article	IF	Citations
55	Extended N-Sulfated Domains Reside at the Nonreducing End of Heparan Sulfate Chains. Journal of Biological Chemistry, 2010, 285, 18336-18343.	1.6	48
56	A Binding Site for Chlorambucil on Metallothioneinâ€. Biochemistry, 1996, 35, 2830-2835.	1.2	47
57	Copurification of P6, MRP8, and MRP14 from Human Granulocytes and Separation of Individual Proteins. Protein Expression and Purification, 1998, 13, 313-318.	0.6	47
58	Size-exclusion chromatography of heparin oligosaccharides at high and low pressure. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 837, 76-86.	1.2	47
59	Confident Assignment of Site-Specific Glycosylation in Complex Glycoproteins in a Single Step. Journal of Proteome Research, 2014, 13, 4347-4355.	1.8	47
60	Analysis of Glycosaminoglycans Using Mass Spectrometry. Current Proteomics, 2011, 8, 325-336.	0.1	46
61	The 3- <i>$>$O</i> -sulfation of heparan sulfate modulates protein binding and lyase degradation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
62	De Novo Sequencing of Heparan Sulfate Oligosaccharides by Electron-Activated Dissociation. Analytical Chemistry, 2013, 85, 11979-11986.	3.2	43
63	Application of network smoothing to glycan LC-MS profiling. Bioinformatics, 2018, 34, 3511-3518.	1.8	43
64	Deep Sequencing of Complex Proteoglycans: A Novel Strategy for High Coverage and Site-specific Identification of Glycosaminoglycan-linked Peptides. Molecular and Cellular Proteomics, 2018, 17, 1578-1590.	2.5	42
65	Toward Automatic and Comprehensive Glycan Characterization by Online PGC-LC-EED MS/MS. Analytical Chemistry, 2020, 92, 782-791.	3.2	42
66	Workflow for Combined Proteomics and Glycomics Profiling from Histological Tissues. Analytical Chemistry, 2014, 86, 9670-9678.	3.2	41
67	Enantiospecificity of Covalent Adduct Formation by Benzo[a]pyrene anti-Diol Epoxide with Human Serum Albumin. Chemical Research in Toxicology, 1994, 7, 829-835.	1.7	40
68	Comparison of charged derivatives for high energy collision-induced dissociation tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 1995, 6, 428-436.	1.2	40
69	Improved Liquid Chromatography-MS/MS of Heparan Sulfate Oligosaccharides via Chip-Based Pulsed Makeup Flow. Analytical Chemistry, 2011, 83, 8222-8229.	3.2	40
70	The influence of sialylation on glycan negative ion dissociation and energetics. Journal of the American Society for Mass Spectrometry, 2006, 17, 844-854.	1.2	39
71	Comparative glycomics of leukocyte glycosaminoglycans. FEBS Journal, 2013, 280, 2447-2461.	2.2	39
72	Proteomics, Glycomics, and Glycoproteomics of Matrisome Molecules. Molecular and Cellular Proteomics, 2019, 18, 2138-2148.	2.5	38

#	Article	IF	CITATIONS
73	Post-translational Modifications in Cartilage Oligomeric Matrix Protein. Journal of Biological Chemistry, 1997, 272, 14120-14126.	1.6	37
74	A glycomics and proteomics study of aging and Parkinson's disease in human brain. Scientific Reports, 2020, 10, 12804.	1.6	37
75	Historical Overview of Glycoanalysis. Methods in Molecular Biology, 2010, 600, 9-30.	0.4	37
76	Benzo[a]pyrene anti-diol epoxide covalently modifies human serum albumin carboxylate side chains and imidazole side chain of histidine(146). Journal of the American Chemical Society, 1991, 113, 8505-8509.	6.6	36
77	Mutagenesis of Surfactant Protein D Informed by Evolution and X-ray Crystallography Enhances Defenses against Influenza A Virus in Vivo. Journal of Biological Chemistry, 2011, 286, 40681-40692.	1.6	36
78	Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation. Analytical and Bioanalytical Chemistry, 2017, 409, 607-618.	1.9	36
79	Comparison of Collisional and Electron-Based Dissociation Modes for Middle-Down Analysis of Multiply Glycosylated Peptides. Journal of the American Society for Mass Spectrometry, 2018, 29, 1075-1085.	1.2	36
80	Improved workup for glycosaminoglycan disaccharide analysis using CE with LIF detection. Electrophoresis, 2008, 29, 4538-4548.	1.3	35
81	Tandem Mass Spectrometry of Heparan Sulfate Negative Ions: Sulfate Loss Patterns and Chemical Modification Methods for Improvement of Product Ion Profiles. Journal of the American Society for Mass Spectrometry, 2012, 23, 1498-1511.	1.2	35
82	Discovery of a Heparan Sulfate 3- <i>O</i> -Sulfation Specific Peeling Reaction. Analytical Chemistry, 2015, 87, 592-600.	3.2	35
83	glypy: An Open Source Glycoinformatics Library. Journal of Proteome Research, 2019, 18, 3532-3537.	1.8	35
84	Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche. Glycobiology, 2011, 21, 152-161.	1.3	34
85	Highly Sulfated Nonreducing End-derived Heparan Sulfate Domains Bind Fibroblast Growth Factor-2 with High Affinity and Are Enriched in Biologically Active Fractions. Journal of Biological Chemistry, 2011, 286, 19311-19319.	1.6	33
86	Mass Spectral Profiling of Glycosaminoglycans from Histological Tissue Surfaces. Analytical Chemistry, 2013, 85, 10984-10991.	3.2	33
87	Posttranslational Modifications to Human Bone Sialoprotein Determined by Mass Spectrometry. Biochemistry, 2001, 40, 12983-12991.	1.2	31
88	Capillary Electrophoresis–Mass Spectrometry of Carbohydrates. Methods in Molecular Biology, 2013, 984, 13-25.	0.4	30
89	A Liquid Chromatography-Mass Spectrometry-based Approach to Characterize the Substrate Specificity of Mammalian Heparanase. Journal of Biological Chemistry, 2014, 289, 34141-34151.	1.6	30
90	Mass Spectrometric Method for Determining the Uronic Acid Epimerization in Heparan Sulfate Disaccharides Generated Using Nitrous Acid. Analytical Chemistry, 2012, 84, 7539-7546.	3.2	29

#	Article	IF	CITATIONS
91	On-slide tissue digestion for mass spectrometry based glycomic and proteomic profiling. MethodsX, 2019, 6, 2329-2347.	0.7	29
92	Complete Molecular Weight Profiling of Low-Molecular Weight Heparins Using Size Exclusion Chromatography-Ion Suppressor-High-Resolution Mass Spectrometry. Analytical Chemistry, 2016, 88, 10654-10660.	3.2	28
93	Heparan sulfate-protein binding specificity. Biochemistry (Moscow), 2013, 78, 726-735.	0.7	27
94	Glycomic and Proteomic Changes in Aging Brain Nigrostriatal Pathway. Molecular and Cellular Proteomics, 2018, 17, 1778-1787.	2.5	27
95	Relative Retention Time Estimation Improves N-Glycopeptide Identifications by LC–MS/MS. Journal of Proteome Research, 2020, 19, 2113-2121.	1.8	27
96	Lanthanide tetrakis (.betadiketonates) as effective NMR shift reagents for organic salts. Journal of Organic Chemistry, 1985, 50, 1322-1324.	1.7	26
97	Complexity and ultrastructure of infectious extracellular vesicles from cells infected by non-enveloped virus. Scientific Reports, 2020, 10, 7939.	1.6	26
98	A Small Molecule Glycosaminoglycan Mimetic Blocks Plasmodium Invasion of the Mosquito Midgut. PLoS Pathogens, 2013, 9, e1003757.	2.1	25
99	A Computational Framework for Heparan Sulfate Sequencing Using High-resolution Tandem Mass Spectra. Molecular and Cellular Proteomics, 2014, 13, 2490-2502.	2.5	25
100	Organic-soluble lanthanide nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts. Analytical Chemistry, 1987, 59, 562-567.	3.2	23
101	Phosphatidylethanolamine binding protein 4 (PEBP4) is a secreted protein and has multiple functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1682-1689.	1.9	23
102	Imaging specific cellular glycan structures using glycosyltransferases via click chemistry. Glycobiology, 2018, 28, 69-79.	1.3	22
103	Sequencing Heparan Sulfate Using HILIC LC-NETD-MS/MS. Analytical Chemistry, 2019, 91, 11738-11746.	3.2	22
104	In-Depth Matrisome and Glycoproteomic Analysis of Human Brain Glioblastoma Versus Control Tissue. Molecular and Cellular Proteomics, 2022, 21, 100216.	2.5	22
105	A Typical Preparation of Francisella tularensis O-Antigen Yields a Mixture of Three Types of Saccharides. Biochemistry, 2011, 50, 10941-10950.	1.2	21
106	Multistage tandem mass spectrometry of chondroitin sulfate and dermatan sulfate. International Journal of Mass Spectrometry, 2011, 305, 131-137.	0.7	21
107	Sensitive method for glycosaminoglycan analysis of tissue sections. Journal of Chromatography A, 2018, 1544, 41-48.	1.8	21
108	Software for Peak Finding and Elemental Composition Assignment for Glycosaminoglycan Tandem Mass Spectra. Molecular and Cellular Proteomics, 2018, 17, 1448-1456.	2.5	21

#	Article	IF	Citations
109	Glycomics Analysis of Mammalian Heparan Sulfates Modified by the Human Extracellular Sulfatase HSulf2. PLoS ONE, 2011, 6, e16689.	1.1	21
110	Structural Analysis of Cartilage Proteoglycans and Glycoproteins Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Biochemistry, 2000, 277, 94-103.	1.1	20
111	Negative Electron Transfer Dissociation Sequencing of 3- <i>O</i> Sulfation-Containing Heparan Sulfate Oligosaccharides. Journal of the American Society for Mass Spectrometry, 2018, 29, 1262-1272.	1.2	20
112	Targeted analysis of glycomics liquid chromatography/mass spectrometry data. Analytical and Bioanalytical Chemistry, 2011, 399, 727-735.	1.9	19
113	Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling. Glycobiology, 2014, 24, 195-207.	1.3	19
114	Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus. Journal of Biological Chemistry, 2018, 293, 10646-10662.	1.6	19
115	Data-independent acquisition mass spectrometry for site-specific glycoproteomics characterization of SARS-CoV-2 spike protein. Analytical and Bioanalytical Chemistry, 2021, 413, 7305-7318.	1.9	17
116	Protective Bâ€cell epitopes of <i>Francisella tularensis O</i> i>â€polysaccharide in a mouse model of respiratory tularaemia. Immunology, 2012, 136, 352-360.	2.0	16
117	Deciphering the mode of action of the processive polysaccharide modifying enzyme dermatan sulfate epimerase 1 by hydrogen–deuterium exchange mass spectrometry. Chemical Science, 2016, 7, 1447-1456.	3.7	16
118	Measuring Site-specific Glycosylation Similarity between Influenza a Virus Variants with Statistical Certainty. Molecular and Cellular Proteomics, 2020, 19, 1533-1545.	2.5	16
119	Serial in-solution digestion protocol for mass spectrometry-based glycomics and proteomics analysis. Molecular Omics, 2020, 16, 364-376.	1.4	16
120	Extraction of Chondroitin/Dermatan Sulfate Glycosaminoglycans from Connective Tissue for Mass Spectrometric Analysis. Methods in Molecular Biology, 2010, 600, 215-225.	0.4	15
121	Screening for Anticoagulant Heparan Sulfate Octasaccharides and Fine Structure Characterization Using Tandem Mass Spectrometry. Biochemistry, 2010, 49, 3743-3752.	1.2	15
122	Nematodes join the family of chondroitin sulfate-synthesizing organisms: Identification of an active chondroitin sulfotransferase in Caenorhabditis elegans. Scientific Reports, 2016, 6, 34662.	1.6	15
123	Heparan sulfate: Resilience factor and therapeutic target for cocaine abuse. Scientific Reports, 2017, 7, 13931.	1.6	14
124	Matrisome changes in Parkinson's disease. Analytical and Bioanalytical Chemistry, 2022, 414, 3005-3015.	1.9	14
125	Effects of restoring normoglycemia in type 1 diabetes on inflammatory profile and renal extracellular matrix structure after simultaneous pancreas and kidney transplantation. Diabetes Research and Clinical Practice, 2015, 107, 46-53.	1.1	13
126	At last, functional glycomics. Nature Methods, 2011, 8, 55-57.	9.0	12

#	Article	IF	CITATIONS
127	The binding sites of monoclonal antibodies to the nonreducing end ofFrancisella tularensis O-antigen accommodate mainly the terminal saccharide. Immunology, 2013, 140, n/a-n/a.	2.0	12
128	Differential characterization and classification of tissue specific glycosaminoglycans by tandem mass spectrometry and statistical methods. International Journal of Mass Spectrometry, 2012, 312, 144-154.	0.7	11
129	Detecting O-GlcNAc using in vitro sulfation. Glycobiology, 2014, 24, 740-747.	1.3	11
130	psims - A Declarative Writer for mzML and mzIdentML for Python. Molecular and Cellular Proteomics, 2019, 18, 571-575.	2.5	11
131	Methods to improve quantitative glycoprotein coverage from bottomâ€up LCâ€MS data. Mass Spectrometry Reviews, 2022, 41, 922-937.	2.8	11
132	The Need for Community Standards to Enable Accurate Comparison of Glycoproteomics Algorithm Performance. Molecules, 2021, 26, 4757.	1.7	11
133	Multi-task learning sparse group lasso: a method for quantifying antigenicity of influenza A(H1N1) virus using mutations and variations in glycosylation of Hemagglutinin. BMC Bioinformatics, 2020, 21, 182.	1.2	10
134	Characteristics of high energy collision-induced dissociation tandem Mass Spectra of Polycyclic aromatic Hydrocarbon diolepoxide adducted peptides. Journal of the American Society for Mass Spectrometry, 1994, 5, 649-654.	1.2	9
135	Characterization of Glycosaminoglycans in Gaping and Intact Connective Tissues of Farmed Atlantic Salmon (Salmo salar) Fillets by Mass Spectrometry. ACS Omega, 2019, 4, 15337-15347.	1.6	9
136	Calculating Glycoprotein Similarities From Mass Spectrometric Data. Molecular and Cellular Proteomics, 2021, 20, 100028.	2.5	9
137	Expression of the Extracellular Sulfatase SULF2 Affects Survival of Head and Neck Squamous Cell Carcinoma Patients. Frontiers in Oncology, 2020, 10, 582827.	1.3	9
138	Proteinase K Activity Inhibitor Near Amino Acids Carrying Large Substituents: Three PAH Diolepoxides Covalently Modify His-146 Human Serum Albumin Residue. Journal of the American Chemical Society, 1994, 116, 7407-7408.	6.6	8
139	Non-reducing end labeling of heparan sulfate via click chemistry and a high throughput ELISA assay for heparanase. Glycobiology, 2016, 27, cww130.	1.3	8
140	A Perspective on the Confident Comparison of Glycoprotein Site-Specific Glycosylation in Sample Cohorts. Biochemistry, 2020, 59, 3089-3097.	1.2	8
141	Resolving Heparan Sulfate Oligosaccharide Positional Isomers Using Hydrophilic Interaction Liquid Chromatography-Cyclic Ion Mobility Mass Spectrometry. Analytical Chemistry, 2022, 94, 2366-2374.	3.2	6
142	Bioinformatics of glycosaminoglycans. Perspectives in Science, 2017, 11, 40-44.	0.6	5
143	Glycosylation of Serum Clusterin in Wild-Type Transthyretin-Associated (ATTRwt) Amyloidosis: A Study of Disease-Associated Compositional Features Using Mass Spectrometry Analyses. Biochemistry, 2020, 59, 4367-4378.	1.2	5
144	Glycoproteomic Sample Processing, LCâ€MS, and Data Analysis Using GlycReSoft. Current Protocols, 2021, 1, e84.	1.3	5

#	Article	IF	CITATIONS
145	Oligosaccharide Substrate Preferences of Human Extracellular Sulfatase Sulf2 Using Liquid Chromatography-Mass Spectrometry Based Glycomics Approaches. PLoS ONE, 2014, 9, e105143.	1.1	4
146	Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor. International Journal of Molecular Sciences, 2021, 22, 6988.	1.8	4
147	Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. Mass Spectrometry Reviews, 2023, 42, 1848-1875.	2.8	4
148	Charged Derivatives for Peptide Sequencing Using a Magnetic Sector Instrument., 1996, 61, 29-42.		3
149	Comment on "Computation of Isotopic Peak Center-Mass Distribution by Fourier Transform― Analytical Chemistry, 2013, 85, 12189-12192.	3.2	3
150	LC-MS and LC-MS/MS studies of incorporation of 34SO3 into glycosaminoglycan chains by sulfotransferases. Glycobiology, 2013, 23, 969-979.	1.3	3
151	Influence of saccharide modifications on heparin lyase III substrate specificities. Glycobiology, 2022, 32, 208-217.	1.3	3
152	Historical Overview of Integrated GAG-omics and Proteomics. Biology of Extracellular Matrix, 2020, , 83-99.	0.3	3
153	Measuring change in glycoprotein structure. Current Opinion in Structural Biology, 2022, 74, 102371.	2.6	3
154	The minimum information required for a glycomics experiment (MIRAGE): reporting guidelines for capillary electrophoresis. Glycobiology, 2022, 32, 580-587.	1.3	2
155	O2â€01â€02: CHARACTERIZATION OF HUMAN ALZHEIMER'S DISEASE BRAINâ€ÐERIVED EXOSOMES. Alzheimer's Dementia, 2018, 14, P608.	and 0.4	1
156	Structural studies of serum clusterin in ATTRwt amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 51-52.	1.4	1
157	Native Mass Spectrometry Sheds Light on Formation of Deadly Heparin-PF4 Complexes. Biophysical Journal, 2020, 119, 1267.	0.2	1
158	GAGrank: Software for Glycosaminoglycan Sequence Ranking Using a Bipartite Graph Model. Molecular and Cellular Proteomics, 2021, 20, 100093.	2.5	1
159	Mass Spectrometry of Oligosaccharides. ChemInform, 2004, 35, no.	0.1	O
160	Reply to Savolainen: Organ- and Cell-specific GAG Chains. Journal of Biological Chemistry, 2009, 284, le2.	1.6	0
161	Mechanisms of Interaction Between Lung Collectins and Influenza a Virus Hemagglutinin. Biophysical Journal, 2011, 100, 214a-215a.	0.2	O
162	[O3–04–04]: COMPREHENSIVE CHARACTERIZATION OF HUMAN ALZHEIMER's DISEASE BRAINâ€DERIVED EXOSOMES. Alzheimer's and Dementia, 2017, 13, P907.	0.4	0

#	Article	IF	CITATIONS
163	Focus on <i>Mass Spectrometry in Glycobiology and Related Fields</i> , Honoring Catherine E. Costello, Recipient of the 2017 ASMS Award for a Distinguished Contribution in Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 1061-1064.	1.2	O
164	Analytical characterization of viruses. Analytical and Bioanalytical Chemistry, 2021, 413, 7145-7146.	1.9	0