Ary Anthony Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2154026/publications.pdf

Version: 2024-02-01

804 papers 55,271 citations

101 h-index ²⁷³⁶
192
g-index

866 all docs 866
docs citations

866 times ranked 32685 citing authors

#	Article	IF	CITATIONS
1	Climate change and evolutionary adaptation. Nature, 2011, 470, 479-485.	13.7	2,489
2	Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 2011, 476, 454-457.	13.7	1,261
3	The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 2011, 476, 450-453.	13.7	1,092
4	Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology, 2003, 28, 175-216.	1.1	896
5	The broad footprint of climate change from genes to biomes to people. Science, 2016, 354, .	6.0	883
6	Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change. PLoS Biology, 2008, 6, e325.	2.6	880
7	Assessing species vulnerability to climate change. Nature Climate Change, 2015, 5, 215-224.	8.1	856
8	Limits to the Adaptive Potential of Small Populations. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 433-458.	3.8	705
9	Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 2011, 4, 709-725.	1.5	661
10	Heritable variation and evolution under favourable and unfavourable conditions. Trends in Ecology and Evolution, 1999, 14, 96-101.	4.2	643
11	Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications, 2011, 4, 326-337.	1.5	617
12	Rapid spread of an inherited incompatibility factor in California Drosophila. Nature, 1991, 353, 440-442.	13.7	609
13	GENETIC ISOLATION BY ENVIRONMENT OR DISTANCE: WHICH PATTERN OF GENE FLOW IS MOST COMMON?. Evolution; International Journal of Organic Evolution, 2014, 68, 1-15.	1.1	598
14	Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation?. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 21-42.	3.8	553
15	A REASSESSMENT OF GENETIC LIMITS TO EVOLUTIONARY CHANGE. Ecology, 2005, 86, 1371-1384.	1.5	532
16	Upper thermal limits in terrestrial ectotherms: how constrained are they?. Functional Ecology, 2013, 27, 934-949.	1.7	519
17	Species borders: ecological and evolutionary perspectives. Trends in Ecology and Evolution, 1994, 9, 223-227.	4.2	468
18	Upper thermal limits of $\langle i \rangle$ Drosophila $\langle i \rangle$ are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16228-16233.	3.3	454

#	Article	lF	Citations
19	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	13.7	436
20	Detecting genetic responses to environmental change. Nature Reviews Genetics, 2008, 9, 421-432.	7.7	434
21	Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature, 2019, 572, 56-61.	13.7	430
22	Adapting to climate change: a perspective from evolutionary physiology. Climate Research, 2010, 43, 3-15.	0.4	414
23	Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecology Letters, 2002, 5, 614-618.	3.0	413
24	Fundamental Evolutionary Limits in Ecological Traits Drive <i>Drosophila</i> Species Distributions. Science, 2009, 325, 1244-1246.	6.0	381
25	From Parasite to Mutualist: Rapid Evolution of Wolbachia in Natural Populations of Drosophila. PLoS Biology, 2007, 5, e114.	2.6	375
26	Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito <i>Aedes aegypti</i> in Australia. Functional Ecology, 2009, 23, 528-538.	1.7	365
27	Genetics of Climate Change Adaptation. Annual Review of Genetics, 2012, 46, 185-208.	3.2	365
28	What Can Plasticity Contribute to Insect Responses to Climate Change?. Annual Review of Entomology, 2016, 61, 433-451.	5.7	362
29	A Rapid Shift in a Classic Clinal Pattern in Drosophila Reflecting Climate Change. Science, 2005, 308, 691-693.	6.0	352
30	Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 2011, 214, 3713-3725.	0.8	352
31	Genetic correlations, tradeoffs and environmental variation. Heredity, 2004, 93, 241-248.	1,2	350
32	UNIDIRECTIONAL INCOMPATIBILITY BETWEEN POPULATIONS OF <i>DROSOPHILA SIMULANS</i> International Journal of Organic Evolution, 1986, 40, 692-701.	1.1	341
33	Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 2010, 52, 296-306.	1.4	332
34	Value of longâ€ŧerm ecological studies. Austral Ecology, 2012, 37, 745-757.	0.7	326
35	Physiological climatic limits in <i>Drosophila</i> : patterns and implications. Journal of Experimental Biology, 2010, 213, 870-880.	0.8	310
36	Low Potential for Climatic Stress Adaptation in a Rainforest Drosophila Species. Science, 2003, 301, 100-102.	6.0	308

#	Article	IF	CITATIONS
37	Male size and mating success in Drosophila melanogaster and D. pseudoobscura under field conditions. Animal Behaviour, 1987, 35, 468-476.	0.8	294
38	Environmental Stress as an Evolutionary Force. BioScience, 2000, 50, 217.	2.2	292
39	Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160138.	1.8	267
40	PHYLOGENETIC CONSTRAINTS IN KEY FUNCTIONAL TRAITS BEHIND SPECIES' CLIMATE NICHES: PATTERNS OF DESICCATION AND COLD RESISTANCE ACROSS 95 <i>DROSOPHILA</i> Journal of Organic Evolution, 2012, 66, 3377-3389.	1,1	261
41	Stability of the wMel Wolbachia Infection following Invasion into Aedes aegypti Populations. PLoS Neglected Tropical Diseases, 2014, 8, e3115.	1.3	261
42	Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control. Current Biology, 2019, 29, 4241-4248.e5.	1.8	257
43	Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e551.	3.6	255
44	Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity, 1999, 83, 637-643.	1.2	252
45	Climatic selection on genes and traits after a 100Âyear-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica, 2007, 129, 133-147.	0.5	246
46	Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult <i>Drosophilaâ€∫ melanogaster</i> . FEBS Journal, 2010, 277, 174-185.	2.2	246
47	Laboratory selection experiments using Drosophila: what do they really tell us?. Trends in Ecology and Evolution, 2000, 15, 32-36.	4.2	233
48	LOCAL ADAPTATION AND COGRADIENT SELECTION IN THE ALPINE PLANT, POA HIEMATA, ALONG A NARROW ALTITUDINAL GRADIENT. Evolution; International Journal of Organic Evolution, 2007, 61, 2925-2941.	1.1	224
49	Population Dynamics of the Wolbachia Infection Causing Cytoplasmic Incompatibility in Drosophila melanogaster. Genetics, 1998, 148, 221-231.	1.2	223
50	Thermal Tolerance in Widespread and Tropical <i>Drosophila</i> Species: Does Phenotypic Plasticity Increase with Latitude?. American Naturalist, 2011, 178, S80-S96.	1.0	219
51	Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity, 1996, 76, 1-8.	1.2	218
52	Chromosomal inversion polymorphisms and adaptation. Trends in Ecology and Evolution, 2004, 19, 482-488.	4.2	217
53	Costs and benefits of cold acclimation in field-released <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 216-221.	3.3	212
54	Biological invasions, climate change and genomics. Evolutionary Applications, 2015, 8, 23-46.	1.5	209

#	Article	IF	CITATIONS
55	An integrated approach to environmental stress tolerance and life-history variation: desiccation tolerance in Drosophila. Biological Journal of the Linnean Society, 1989, 37, 117-136.	0.7	206
56	Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Functional Ecology, 2005, 19, 222-227.	1.7	206
57	Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genetical Research, 2002, 80, 79-87.	0.3	203
58	Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biology, 2017, 15, e2001894.	2.6	202
59	Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecology Letters, 2016, 19, 1468-1478.	3.0	200
60	Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress. PLoS Pathogens, 2017, 13, e1006006.	2.1	198
61	A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of <i>Drosophila melanogaster</i> from eastern Australia. Journal of Evolutionary Biology, 2010, 23, 2484-2493.	0.8	193
62	The Impact of Climate Change on Fertility. Trends in Ecology and Evolution, 2019, 34, 249-259.	4.2	188
63	Revisiting Adaptive Potential, Population Size, and Conservation. Trends in Ecology and Evolution, 2017, 32, 506-517.	4.2	182
64	Sensitivity to thermal extremes in Australian <i>Drosophila </i> iiimplies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 2014, 20, 1738-1750.	4.2	181
65	The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathogens, 2018, 14, e1006815.	2.1	181
66	A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses, $2015, 2, \ldots$	2.6	175
67	Field evaluation of the establishment potential of wmelpop Wolbachia in Australia and Vietnam for dengue control. Parasites and Vectors, 2015, 8, 563.	1.0	173
68	Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species. Frontiers in Zoology, 2013, 10, 45.	0.9	171
69	LEVELS OF VARIATION IN STRESS RESISTANCE IN DROSOPHILA AMONG STRAINS, LOCAL POPULATIONS, AND GEOGRAPHIC REGIONS: PATTERNS FOR DESICCATION, STARVATION, COLD RESISTANCE, AND ASSOCIATED TRAITS. Evolution; International Journal of Organic Evolution, 2001, 55, 1621-1630.	1.1	169
70	Rapid Sequential Spread of Two Wolbachia Variants in Drosophila simulans. PLoS Pathogens, 2013, 9, e1003607.	2.1	169
71	<i>Wolbachia</i> strains for disease control: ecological and evolutionary considerations. Evolutionary Applications, 2015, 8, 751-768.	1.5	168
72	Dynamics of the "Popcorn―Wolbachia Infection in Outbred <i>Aedes aegypti</i> Informs Prospects for Mosquito Vector Control. Genetics, 2011, 187, 583-595.	1.2	162

#	Article	IF	Citations
73	Maternal and grandmaternal age influence offspring fitness inDrosophila. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2105-2110.	1.2	160
74	Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Research, 2019, 3, 1547.	2.0	160
75	Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomologia Experimentalis Et Applicata, 1998, 86, 13-24.	0.7	159
76	Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Molecular Biology, 1999, 8, 243-255.	1.0	159
77	Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in <i>Drosophila melanogaster</i> . Functional Ecology, 2012, 26, 84-93.	1.7	157
78	Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics, 2014, 15, 275.	1.2	157
79	Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Research, 2019, 3, 1547.	2.0	157
80	Consequences of Heat Hardening on a Field Fitness Component in Drosophila Depend on Environmental Temperature. American Naturalist, 2007, 169, 175-183.	1.0	152
81	Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in <i>Drosophila</i> . Functional Ecology, 2010, 24, 694-700.	1.7	152
82	Selection for starvation resistance inDrosophila melanogaster : physiological correlates, enzyme activities and multiple stress responses. Journal of Evolutionary Biology, 1999, 12, 370-379.	0.8	150
83	Geographical Variation in the Acclimation Responses of Drosophila to Temperature Extremes. American Naturalist, 1993, 142, S93-S113.	1.0	148
84	Complexity of the cold acclimation response in Drosophila melanogaster. Journal of Insect Physiology, 2006, 52, 94-104.	0.9	148
85	Unidirectional Incompatibility between Populations of Drosophila simulans. Evolution; International Journal of Organic Evolution, 1986, 40, 692.	1.1	147
86	RAPID LOSS OF STRESS RESISTANCE IN DROSOPHILA MELANOGASTER UNDER ADAPTATION TO LABORATORY CULTURE. Evolution; International Journal of Organic Evolution, 2001, 55, 436-438.	1.1	141
87	Wolbachia dynamics and host effects: what has (and has not) been demonstrated?. Trends in Ecology and Evolution, 2002, 17, 257-262.	4.2	135
88	A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans. Animal Behaviour, 1987, 35, 807-818.	0.8	131
89	Clinal variation in Drosophila serrata for stress resistance and body size. Genetical Research, 2002, 79, 141-148.	0.3	131
90	Response of Two Heat Shock Genes to Selection for Knockdown Heat Resistance in <i>Drosophila melanogaster</i> . Genetics, 1996, 143, 1615-1627.	1.2	130

#	Article	IF	Citations
91	Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?. Biology Letters, 2016, 12, 20151072.	1.0	129
92	Rapid Global Spread of wRi-like Wolbachia across Multiple Drosophila. Current Biology, 2018, 28, 963-971.e8.	1.8	127
93	Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Neglected Tropical Diseases, 2019, 13, e0007023.	1.3	125
94	Evolutionary Ecology of <i>Wolbachia</i> Releases for Disease Control. Annual Review of Genetics, 2019, 53, 93-116.	3.2	123
95	Identification of a candidate adaptive polymorphism for <i>Drosophila</i> life history by parallel independent clines on two continents. Molecular Ecology, 2010, 19, 760-774.	2.0	119
96	Partial cytoplasmic incompatibility between two Australian populations of <i>Drosophila melanogaster</i> . Entomologia Experimentalis Et Applicata, 1988, 48, 61-67.	0.7	117
97	Comparing Different Measures of Heat Resistance in Selected Lines of Drosophila melanogaster. Journal of Insect Physiology, 1997, 43, 393-405.	0.9	117
98	The Effects of Host Age, Host Nuclear Background and Temperature on Phenotypic Effects of the Virulent Wolbachia Strain <i>popcorn</i> in <i>Drosophila melanogaster</i> Genetics, 2003, 164, 1027-1034.	1.2	117
99	Demographic factors and genetic variation influence population persistence under environmental change. Journal of Evolutionary Biology, 2009, 22, 124-133.	0.8	114
100	Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nature Communications, 2017, 8, 1071.	5.8	113
101	Direct and correlated responses to selection for desiccation resistance: a comparison of Drosophila melanogaster and D. simulans. Journal of Evolutionary Biology, 1993, 6, 643-657.	0.8	112
102	A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes and Development, 2005, 19, 2138-2151.	2.7	111
103	PLASTICITY VERSUS ENVIRONMENTAL CANALIZATION: POPULATION DIFFERENCES IN THERMAL RESPONSES ALONG A LATITUDINAL GRADIENT IN <i>DROSOPHILA SERRATA</i> Lively Evolution; International Journal of Organic Evolution, 2009, 63, 1954-1963.	1.1	111
104	GEOGRAPHIC VARIATION FOR WING SHAPE IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2002, 56, 1068-1073.	1.1	110
105	Quantitative trait symmetry independent of Hsp90 buffering: Distinct modes of genetic canalization and developmental stability. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13396-13401.	3.3	110
106	Wolbachia-like organisms and cytoplasmic incompatibility in Drosophila simulans. Journal of Invertebrate Pathology, 1989, 54, 344-352.	1.5	108
107	DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp27 from natural populations of Drosophila melanogaster. Molecular Ecology, 2003, 12, 2025-2032.	2.0	108
108	Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology, 2005, 18, 804-810.	0.8	108

#	Article	IF	CITATIONS
109	<i>Wolbachia</i> supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME Journal, 2020, 14, 676-687.	4.4	108
110	High-Throughput PCR Assays To Monitor Wolbachia Infection in the Dengue Mosquito (Aedes aegypti) and Drosophila simulans. Applied and Environmental Microbiology, 2012, 78, 4740-4743.	1.4	107
111	Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continentalâ€scale soil and weather data. Methods in Ecology and Evolution, 2014, 5, 273-286.	2.2	107
112	The latitudinal cline in the In(3R)Payne inversion polymorphism has shifted in the last 20Âyears in Australian Drosophila melanogaster populations. Molecular Ecology, 2005, 14, 851-858.	2.0	105
113	Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecology, 2019, 44, 3-27.	0.7	105
114	GENETIC DIVERGENCE UNDER UNIFORM SELECTION. II. DIFFERENT RESPONSES TO SELECTION FOR KNOCKDOWN RESISTANCE TO ETHANOL AMONG <i>DROSOPHILA MELANOGASTER</i> POPULATIONS AND THEIR REPLICATE LINES. Genetics, 1986, 114, 145-164.	1.2	105
115	Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Neglected Tropical Diseases, 2019, 13, e0007357.	1.3	104
116	Dissecting adaptive clinal variation: markers, inversions and size/stress associations in Drosophila melanogaster from a central field population. Ecology Letters, 2002, 5, 756-763.	3.0	103
117	Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion. American Journal of Tropical Medicine and Hygiene, 2016, 94, 507-516.	0.6	103
118	Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Frontiers in Zoology, 2016, 13, 31.	0.9	103
119	Clinal variation and laboratory adaptation in the rainforest species Drosophila birchii for stress resistance, wing size, wing shape and development time. Journal of Evolutionary Biology, 2005, 18, 213-222.	0.8	102
120	Postponed reproduction as an adaptation to winter conditions inDrosophila melanogaster: evidence for clinal variation under semi-natural conditions. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2163-2168.	1.2	101
121	Response To Natural And Laboratory Selection At The Drosophila Hsp70 Genes. Evolution; International Journal of Organic Evolution, 2002, 56, 1796-1801.	1.1	101
122	Persistence of a <i>Wolbachia</i> infection frequency cline in <i>Drosophila melanogaster</i> and the possible role of reproductive dormancy. Evolution; International Journal of Organic Evolution, 2016, 70, 979-997.	1.1	99
123	Nonclinality of Molecular Variation Implicates Selection in Maintaining a Morphological Cline of <i>Drosophila melanogaster</i> . Genetics, 2001, 158, 319-323.	1.2	98
124	Vegetation increases the abundance of natural enemies in vineyards. Biological Control, 2009, 49, 259-269.	1.4	97
125	Rates and Patterns of Laboratory Adaptation in (Mostly) Insects. Journal of Economic Entomology, 2018, 111, 501-509.	0.8	96
126	Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. Journal of Animal Ecology, 2014, 83, 769-778.	1.3	95

#	Article	IF	CITATIONS
127	Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Molecular Ecology, 2007, 16, 2948-2957.	2.0	92
128	Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	92
129	Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agricultural and Forest Entomology, 2007, 9, 173-179.	0.7	91
130	Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits. Genetical Research, 2005, 85, 15-22.	0.3	90
131	Acclimation for desiccation resistance in Drosophila melanogaster and the association between acclimation responses and genetic variation. Journal of Insect Physiology, 1990, 36, 885-891.	0.9	89
132	Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster. Heredity, 2003, 90, 195-202.	1.2	89
133	Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti. PLoS Neglected Tropical Diseases, 2015, 9, e0003930.	1.3	89
134	Selection for adult desiccation resistance in Drosophila melanogaster: fitness components, larval resistance and stress correlations. Biological Journal of the Linnean Society, 1993, 48, 43-54.	0.7	88
135	Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output. Scientific Reports, 2015, 5, 10436.	1.6	88
136	THE ASSOCIATION BETWEEN FLUCTUATING ASYMMETRY, TRAIT VARIABILITY, TRAIT HERITABILITY, AND STRESS: A MULTIPLY REPLICATED EXPERIMENT ON COMBINED STRESSES IN <i>DROSOPHILA MELANOGASTER</i> Evolution; International Journal of Organic Evolution, 1999, 53, 493-505.	1.1	87
137	A predicted niche shift corresponds with increased thermal resistance in an invasive mite, <i><scp>H</scp>alotydeus destructor</i>	2.7	87
138	HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2006, 60, 2529-2538.	1.1	86
139	VERY LOW ADDITIVE GENETIC VARIANCE AND EVOLUTIONARY POTENTIAL IN MULTIPLE POPULATIONS OF TWO RAINFOREST DROSOPHILA SPECIES. Evolution; International Journal of Organic Evolution, 2006, 60, 1104.	1.1	86
140	Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity, 2018, 120, 386-395.	1.2	86
141	Hybridization as a conservation management tool. Conservation Letters, 2019, 12, e12652.	2.8	86
142	Genetic mixing for population management: From genetic rescue to provenancing. Evolutionary Applications, 2021, 14, 634-652.	1.5	85
143	Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomologia Experimentalis Et Applicata, 1997, 85, 211-219.	0.7	84
144	Uniform Selection as a Diversifying Force in Evolution: Evidence from Drosophila. American Naturalist, 1989, 134, 613-637.	1.0	83

#	Article	IF	CITATIONS
145	VERY LOW ADDITIVE GENETIC VARIANCE AND EVOLUTIONARY POTENTIAL IN MULTIPLE POPULATIONS OF TWO RAINFOREST DROSOPHILA SPECIES. Evolution; International Journal of Organic Evolution, 2006, 60, 1104-1108.	1.1	83
146	Selection for cold resistance alters gene transcript levels in Drosophila melanogaster. Journal of Insect Physiology, 2009, 55, 549-555.	0.9	83
147	A next-generation sequencing method for overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses. BMC Biology, $2011, 9, 19$.	1.7	82
148	Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nature Communications, 2019, 10, 4455.	5.8	82
149	Stress Resistance and Environmental Dependency of Inbreeding Depression in Drosophila melanogaster. Conservation Biology, 2000, 14, 1187-1192.	2.4	81
150	Wolbachia effects in Drosophila melanogaster: in search of fitness benefits. Journal of Invertebrate Pathology, 2004, 87, 45-50.	1.5	81
151	A new set of laboratory-selected Drosophila melanogaster lines for the analysis of desiccation resistance: response to selection, physiology and correlated responses. Journal of Experimental Biology, 2006, 209, 1837-1847.	0.8	81
152	The influence of age and experience with conspecifics on territorial behavior inDrosophila melanogaster. Journal of Insect Behavior, 1990, 3, 1-12.	0.4	80
153	The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Molecular Ecology, 2011, 20, 2100-2110.	2.0	80
154	A field cage test of the effects of the endosymbiont Wolbachia on Drosophila melanogaster. Heredity, 2001, 86, 731-737.	1.2	79
155	Patterns of Diversity and Linkage Disequilibrium Within the Cosmopolitan Inversion In(3R)Payne in Drosophila melanogaster Are Indicative of Coadaptation. Genetics, 2006, 172, 1655-1663.	1.2	79
156	The effects of soil tillage on beneficial invertebrates within the vineyard. Agricultural and Forest Entomology, 2008, 10, 233-243.	0.7	79
157	Knocking down expression of <i>Hsp22</i> and <i>Hsp23</i> by RNA interference affects recovery from chill coma in <i>Drosophila melanogaster</i> Journal of Experimental Biology, 2010, 213, 4146-4150.	0.8	79
158	Effects of small Hsp genes on developmental stability and microenvironmental canalization. BMC Evolutionary Biology, 2010, 10, 284.	3.2	78
159	Field Validation of the Gravid <i>Aedes</i> Trap (GAT) for Collection of <i>Aedes aegypti</i> (Diptera:) Tj ETQq1 1 0.	.784314 r	gBT Overloo
160	The response of Chironomidae to sediment pollution and other environmental characteristics in urban wetlands. Freshwater Biology, 2007, 52, 2444-2462.	1.2	77
161	Natural enemy responses and pest control: Importance of local vegetation. Biological Control, 2010, 52, 160-166.	1.4	77
162	Making decisions to conserve species under climate change. Climatic Change, 2013, 119, 239-246.	1.7	77

#	Article	IF	CITATIONS
163	Daily temperature extremes play an important role in predicting thermal effects. Journal of Experimental Biology, 2015, 218, 2289-96.	0.8	77
164	What can livestock breeders learn from conservation genetics and vice versa?. Frontiers in Genetics, 2015, 6, 38.	1,1	77
165	Effects of Methoxyfenozide, Indoxacarb, and Other Insecticides on the Beneficial Egg Parasitoid Trichogramma nr. brassicae (Hymenoptera: Trichogrammatidae) Under Laboratory and Field Conditions. Journal of Economic Entomology, 2003, 96, 1083-1090.	0.8	76
166	Effect of altitude on the genetic structure of an Alpine grass, Poa hiemata. Annals of Botany, 2009, 103, 885-899.	1.4	76
167	Effects of Native Grass Cover Crops on Beneficial and Pest Invertebrates in Australian Vineyards. Environmental Entomology, 2010, 39, 970-978.	0.7	76
168	Stable Introduction of Plant-Virus-Inhibiting Wolbachia into Planthoppers for Rice Protection. Current Biology, 2020, 30, 4837-4845.e5.	1.8	76
169	THE GENETICS OF CENTRAL AND MARGINAL POPULATIONS OF <i> DROSOPHILA SERRATA. </i> VARIATION FOR STRESS RESISTANCE AND SPECIES BORDERS. Evolution; International Journal of Organic Evolution, 1993, 47, 1255-1270.	1.1	75
170	Detoxifying enzyme complements and host use phenotypes in 160 insect species. Current Opinion in Insect Science, 2019, 31, 131-138.	2.2	75
171	Temperatures that sterilize males better match global species distributions than lethal temperatures. Nature Climate Change, 2021, 11, 481-484.	8.1	75
172	Evolutionary potential of multiple measures of upper thermal tolerance in <i><scp>D</scp>rosophila melanogaster</i> . Functional Ecology, 2016, 30, 442-452.	1.7	74
173	Evidence of genomic adaptation to climate in <i>Eucalyptus microcarpa</i> : Implications for adaptive potential to projected climate change. Molecular Ecology, 2017, 26, 6002-6020.	2.0	74
174	Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Neglected Tropical Diseases, 2020, 14, e0008157.	1.3	74
175	Spatial scale of benefits from adjacent woody vegetation on natural enemies within vineyards. Biological Control, 2013, 64, 57-65.	1.4	73
176	Extending spatial modelling of climate change responses beyond the realized niche: estimating, and accommodating, physiological limits and adaptive evolution. Global Ecology and Biogeography, 2015, 24, 1192-1202.	2.7	73
177	Shifting clinal patterns and microsatellite variation inDrosophila serratapopulations: a comparison of populations near the southern border of the species range. Journal of Evolutionary Biology, 2002, 15, 763-774.	0.8	72
178	Body Size and Wing Shape Measurements as Quality Indicators of Aedes aegypti Mosquitoes Destined for Field Release. American Journal of Tropical Medicine and Hygiene, 2013, 89, 78-92.	0.6	72
179	Behavior ofWolbachiaEndosymbionts FromDrosophila SimulansinDrosophila Serrata, A Novel Host. American Naturalist, 1997, 149, 975-988.	1.0	71
180	Overwintering in Drosophila melanogaster: outdoor field cage experiments on clinal and laboratory selected populations help to elucidate traits under selection. Journal of Evolutionary Biology, 2003, 16, 614-623.	0.8	71

#	Article	IF	Citations
181	Association between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from Yogyakarta, Indonesia. Insects, 2015, 6, 658-685.	1.0	71
182	Molecular markers indicate that the wheat curl mite, <i>Aceria tosichella</i> keifer, may represent a species complex in Australia. Bulletin of Entomological Research, 2009, 99, 479-486.	0.5	70
183	Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti. PLoS Neglected Tropical Diseases, 2020, 14, e0007958.	1.3	70
184	Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Australian Journal of Entomology, 2005, 44, 233-243.	1.1	69
185	Characterizing the Aedes aegypti Population in a Vietnamese Village in Preparation for a Wolbachia-Based Mosquito Control Strategy to Eliminate Dengue. PLoS Neglected Tropical Diseases, 2009, 3, e552.	1.3	69
186	Mission Accomplished? We Need a Guide to the †Post Release†Morld of Wolbachia for Aedes-borne Disease Control. Trends in Parasitology, 2018, 34, 217-226.	1.5	69
187	Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Functional Ecology, 2005, 19, 853-858.	1.7	68
188	Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 771-778.	1.2	67
189	Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions. PLoS Neglected Tropical Diseases, 2016, 10, e0004320.	1.3	67
190	Species status and population genetic structure of grapevine eriophyoid mites. Entomologia Experimentalis Et Applicata, 2004, 111, 87-96.	0.7	66
191	Towards genetic markers in animal populations as biomonitors for human-induced environmental change. Ecology Letters, 2007, 10, 63-76.	3.0	66
192	Densityâ€dependent population dynamics in <i>Aedes aegypti</i> slow the spread of <scp><i>w</i>M</scp> el <i>Wolbachia</i> . Journal of Applied Ecology, 2016, 53, 785-793.	1.9	66
193	A comprehensive assessment of inbreeding and laboratory adaptation in <i>Aedes aegypti</i> mosquitoes. Evolutionary Applications, 2019, 12, 572-586.	1.5	66
194	Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster. Journal of Insect Physiology, 2004, 50, 695-700.	0.9	65
195	Phenotypic plasticity in upper thermal limits is weakly related to Drosophila species distributions. Functional Ecology, 2011, 25, 661-670.	1.7	65
196	Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasites and Vectors, 2014, 7, 58.	1.0	65
197	Effects of Experience on Oviposition and Attraction in Drosophila: Comparing Apples and Oranges. American Naturalist, 1985, 126, 41-51.	1.0	64
198	Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. Journal of Thermal Biology, 2011, 36, 409-416.	1.1	64

#	Article	lF	CITATIONS
199	Phylogenetic analyses reveal extensive cryptic speciation and host specialization in an economically important mite taxon. Molecular Phylogenetics and Evolution, 2013, 66, 928-940.	1.2	64
200	Population Bottlenecks Increase Additive Genetic Variance But Do Not Break a Selection Limit in Rain Forest Drosophila. Genetics, 2008, 179, 2135-2146.	1,2	63
201	An elusive endosymbiont: Does <i>Wolbachia</i> occur naturally in <i>Aedes aegypti</i> ?. Ecology and Evolution, 2020, 10, 1581-1591.	0.8	63
202	Eriophyoid mite damage in Vitis vinifera (grapevine) in Australia: Calepitrimerus vitis and Colomerus vitis (Acari: Eriophyidae) as the common cause of the widespread †Restricted Spring Growth' syndrome. Experimental and Applied Acarology, 2005, 35, 83-109.	0.7	61
203	Field validation of laboratory-derived IOBC toxicity ratings for natural enemies in commercial vineyards. Biological Control, 2006, 39, 507-515.	1.4	61
204	Genetic structure of Halotydeus destructor and Penthaleus major populations in Victoria (Acari:) Tj ETQq0 0 0 rg	BT/Qverlo	ock_10 Tf 50 5
205	Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids?. Oikos, 2003, 100, 563-573.	1.2	60
206	Cross-generation effects due to cold exposure in Drosophila serrata. Functional Ecology, 2003, 17, 664-672.	1.7	60
207	DNA identification of urban Tanytarsini chironomids (Diptera:Chironomidae). Journal of the North American Benthological Society, 2007, 26, 587-600.	3.0	60
208	Territoriality in Drosophila melanogaster as a conditional strategy. Animal Behaviour, 1990, 40, 526-537.	0.8	59
209	Clonal reproduction and population genetic structure of grape phylloxera, Daktulosphaira vitifoliae, in Australia. Heredity, 2002, 88, 203-211.	1.2	59
210	How useful are thermal vulnerability indices?. Trends in Ecology and Evolution, 2021, 36, 1000-1010.	4.2	59
211	A FIELD-BASED MICROCOSM METHOD TO ASSESS THE EFFECTS OF POLLUTED URBAN STREAM SEDIMENTS ON AQUATIC MACROINVERTEBRATES. Environmental Toxicology and Chemistry, 2005, 24, 170.	2.2	58
212	Phenological changes in six Australian subalpine plants in response to experimental warming and yearâ€toâ€year variation. Journal of Ecology, 2010, 98, 927-937.	1.9	58
213	Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ, 2018, 6, e4980.	0.9	57
214	Genomic Trajectories to Desiccation Resistance: Convergence and Divergence Among Replicate Selected <i>Drosophila</i> Lines. Genetics, 2017, 205, 871-890.	1.2	56
215	Heritable variation for territorial success in two Drosophila melanogaster populations. Animal Behaviour, 1988, 36, 1180-1189.	0.8	55
216	Functional Characterization of the Frost Gene in Drosophila melanogaster: Importance for Recovery from Chill Coma. PLoS ONE, 2010, 5, e10925.	1.1	55

#	Article	IF	Citations
217	A Single Hot Event That Does Not Affect Survival but Decreases Reproduction in the Diamondback Moth, Plutella xylostella. PLoS ONE, 2013, 8, e75923.	1.1	55
218	Genomic variation predicts adaptive evolutionary responses better than population bottleneck history. PLoS Genetics, 2019, 15, e1008205.	1.5	55
219	Unbiased population heterozygosity estimates from genomeâ€wide sequence data. Methods in Ecology and Evolution, 2021, 12, 1888-1898.	2.2	55
220	Territorial encounters between Drosophila males of different sizes. Animal Behaviour, 1987, 35, 1899-1901.	0.8	54
221	Altitudinal patterns for latitudinally varying traits and polymorphic markers in Drosophila melanogaster from eastern Australia. Journal of Evolutionary Biology, 2006, 19, 473-482.	0.8	54
222	The changing status of invertebrate pests and the future of pest management in the Australian grains industry. Australian Journal of Experimental Agriculture, 2008, 48, 1481.	1.0	54
223	A clinally varying promoter polymorphism associated with adaptive variation in wing size in <i>Drosophila</i> . Molecular Ecology, 2010, 19, 775-784.	2.0	54
224	Understanding niche shifts: using current and historical data to model the invasive redlegged earth mite, <i>Halotydeus destructor</i> i>. Diversity and Distributions, 2012, 18, 191-203.	1.9	54
225	Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence. Nature Communications, 2015, 6, 7829.	5.8	54
226	Detection of Low-Level Cardinium and Wolbachia Infections in Culicoides. Applied and Environmental Microbiology, 2015, 81, 6177-6188.	1.4	54
227	Insecticide resistance status of Aedes aegypti and Aedes albopictus mosquitoes in Papua New Guinea. Parasites and Vectors, 2019, 12, 333.	1.0	54
228	Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomology, 2015, 54, 292-305.	0.8	53
229	Genomic evidence for role of inversion <i>3<scp>RP</scp></i> of <i>Drosophila melanogaster</i> in facilitating climate change adaptation. Molecular Ecology, 2015, 24, 2423-2432.	2.0	53
230	No detectable effect of $\langle i \rangle$ Wolbachia $w \langle i \rangle$ Mel on the prevalence and abundance of the RNA virome of $\langle i \rangle$ Drosophila melanogaster $\langle i \rangle$. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181165.	1.2	53
231	A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito. Molecular Ecology Resources, 2019, 19, 1254-1264.	2.2	53
232	Acclimation for desiccation resistance in Drosophila: Species and population comparisons. Journal of Insect Physiology, 1991, 37, 757-762.	0.9	52
233	ACCLIMATION, CROSS-GENERATION EFFECTS, AND THE RESPONSE TO SELECTION FOR INCREASED COLD RESISTANCE IN <i>DROSOPHILA</i> Levolution; International Journal of Organic Evolution, 1996, 50, 1182-1192.	1.1	52
234	Cover crops in Victorian apple orchards: Effects on production, natural enemies and pests across a season. Crop Protection, 2009, 28, 675-683.	1.0	52

#	Article	IF	CITATIONS
235	Incidence of Facultative Bacterial Endosymbionts in Spider Mites Associated with Local Environments and Host Plants. Applied and Environmental Microbiology, 2018, 84, .	1.4	52
236	Escalating insecticide resistance in Australian grain pests: contributing factors, industry trends and management opportunities. Pest Management Science, 2019, 75, 1494-1506.	1.7	52
237	Acclimation, Cross-Generation Effects, and the Response to Selection for Increased Cold Resistance in Drosophila. Evolution; International Journal of Organic Evolution, 1996, 50, 1182.	1.1	51
238	Effects of sulfur on Trichogramma egg parasitoids in vineyards: measuring toxic effects and establishing release windows. Australian Journal of Experimental Agriculture, 2000, 40, 1165.	1.0	51
239	Trait variability and stress: canalization, developmental stability and the need for a broad approach. Ecology Letters, 2001, 4, 97-101.	3.0	51
240	Identifying chironomids (Diptera: Chironomidae) for biological monitoring with PCR–RFLP. Bulletin of Entomological Research, 2003, 93, 483-490.	0.5	51
241	Interspecific Hybridization May Provide Novel Opportunities for Coral Reef Restoration. Frontiers in Marine Science, 2018, 5, .	1.2	51
242	Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, <i><scp>G</scp>alaxiella pusilla</i> (<scp>M</scp> ack) (<scp>P</scp> isces: <scp>G</scp> alaxiidae). Molecular Ecology, 2013, 22, 1820-1835.	2.0	50
243	Novel Estimates of <i> Aedes aegypti </i> (Diptera: Culicidae) Population Size and Adult Survival Based on <i> Wolbachia </i> Releases. Journal of Medical Entomology, 2013, 50, 624-631.	0.9	50
244	The Effect of Virus-Blocking Wolbachia on Male Competitiveness of the Dengue Vector Mosquito, Aedes aegypti. PLoS Neglected Tropical Diseases, 2014, 8, e3294.	1.3	50
245	Larval Competition Extends Developmental Time and Decreases Adult Size of wMelPop Wolbachia-Infected Aedes aegypti. American Journal of Tropical Medicine and Hygiene, 2014, 91, 198-205.	0.6	50
246	Mechanistic models for predicting insect responses to climate change. Current Opinion in Insect Science, 2016, 17, 81-86.	2.2	50
247	Predicting Wolbachia invasion dynamics in Aedes aegypti populations using models of density-dependent demographic traits. BMC Biology, 2016, 14, 96.	1.7	50
248	Effects of Methoxyfenozide, Indoxacarb, and Other Insecticides on the Beneficial Egg Parasitoid & lt; >Trichogramma< l> nr. & lt; >brassicae< l> (Hymenoptera: Trichogrammatidae) Under Laboratory and Field Conditions. Journal of Economic Entomology, 2003, 96, 1083-1090.	0.8	49
249	Antagonistic selection between adult thorax and wing size in field released <i>Drosophila melanogaster</i> independent of thermal conditions. Journal of Evolutionary Biology, 2007, 20, 2219-2227.	0.8	49
250	A high incidence of parthenogenesis in agricultural pests. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2473-2481.	1.2	49
251	Gene arrangement and sequence of mitochondrial genomes yield insights into the phylogeny and evolution of bees and sphecid wasps (Hymenoptera: Apoidea). Molecular Phylogenetics and Evolution, 2018, 124, 1-9.	1.2	49
252	Selection for territoriality in Drosophila melanogaster: correlated responses in mating success and other fitness components. Animal Behaviour, 1989, 38, 23-34.	0.8	48

#	Article	IF	CITATIONS
253	Developing a Commercially Viable System for Biological Control of Light Brown Apple Moth (Lepidoptera: Tortricidae) in Grapes Using Endemic Trichogramma (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology, 1997, 90, 370-382.	0.8	48
254	Both allelic variation and expression of nuclear and cytoplasmic transcripts of Hsr-omega are closely associated with thermal phenotype in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2423-2428.	3.3	48
255	The Association between Fluctuating Asymmetry, Trait Variability, Trait Heritability, and Stress: A Multiply Replicated Experiment on Combined Stresses in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1999, 53, 493.	1.1	48
256	Effects of Cold Storage on Field and Laboratory Performance of Trichogramma carverae (Hymenoptera: Trichogrammatidae) and the Response of Three Trichogramma spp. (T. carverae, T. nr.) Tj ETQq0	O OorgeBT/	Ov as ock 10 1
257	Effects of Cold Storage on Field and Laboratory Performance of &ItI>Trichogramma carverae&It/I> (Hymenoptera: Trichogrammatidae) and the Response of Three &ItI>Trichogramma&It/I> spp. (&ItI>T. carverae&It/I>, &ItI>T&It/I>. nr.) Tj ETQq1 1 0.784314	ł rgB≣ /Ov	erl øs k 10 Tf
258	Is there genetic structure in populations of Helicoverpa armigera from Australia?. Entomologia Experimentalis Et Applicata, 2007, 122, 253-263.	0.7	48
259	Changes in the Genetic Structure of <i> Aedes aegypti < /i > (Diptera: Culicidae) Populations in Queensland, Australia, Across Two Seasons: Implications for Potential Mosquito Releases. Journal of Medical Entomology, 2011, 48, 999-1007.</i>	0.9	48
260	<i>Wolbachia</i> strain <i>w</i> AlbB maintains high density and dengue inhibition following introduction into a field population of <i>Aedes aegypti</i> Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190809.	1.8	48
261	MITOCHONDRIAL DNA POLYMORPHISM AND CYTOPLASMIC INCOMPATIBILITY IN NATURAL POPULATIONS OF <i>DROSOPHILA SIMULANS </i> Levolution; International Journal of Organic Evolution, 1990, 44, 1383-1386.	1.1	47
262	Tolerance of cryptic species of blue oat mites (Penthaleus spp.) and the redlegged earth mite (Halotydeus destructor) to pesticides. Australian Journal of Experimental Agriculture, 1999, 39, 621.	1.0	47
263	Isolating the impact of sediment toxicity in urban streams. Environmental Pollution, 2010, 158, 1716-1725.	3.7	47
264	Acclimation for heat resistance in Trichogrammanr. brassicae: can it occur without costs?. Functional Ecology, 2000, 14, 55-60.	1.7	46
265	Plant host associations of Penthaleus species and Halotydeus destructor (Acari: Penthaleidae) and implications for integrated pest management. Experimental and Applied Acarology, 2004, 33, 1-20.	0.7	46
266	High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia. Molecular Ecology, 2006, 16, 75-87.	2.0	46
267	The association between inversion In(3R)Payne and clinally varying traits in Drosophila melanogaster. Genetica, 2006, 128, 373-384.	0.5	46
268	Ecological evidence links adverse biological effects to pesticide and metal contamination in an urban Australian watershed. Journal of Applied Ecology, 2014, 51, 426-439.	1.9	46
269	Plasticity for desiccation tolerance across <i>Drosophila</i> species is affected by phylogeny and climate in complex ways. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180048.	1.2	46
270	Local thermal adaptation and limited gene flow constrain future climate responses of a marine ecosystem engineer. Evolutionary Applications, 2020, 13, 918-934.	1.5	46

#	Article	IF	CITATIONS
271	Distribution of Drosophila melanogaster on Alternative Resources: Effects of Experience and Starvation. American Naturalist, 1985, 126, 662-679.	1.0	45
272	Cytoplasmic incompatibility in Drosophila simulans: evolving complexity. Trends in Ecology and Evolution, 1996, 11, 145-146.	4.2	45
273	Limits to the Southern Border of Drosophila serrata: Cold Resistance, Heritable Variation, and Trade-Offs. Evolution; International Journal of Organic Evolution, 1999, 53, 1823.	1.1	45
274	Shelterbelts in agricultural landscapes suppress invertebrate pests. Australian Journal of Experimental Agriculture, 2006, 46, 1379.	1.0	45
275	Identifying signature of chemical applications on indigenous and invasive nontarget arthropod communities in vineyards. Ecological Applications, 2010, 20, 1693-1703.	1.8	45
276	Gene and protein expression of Drosophila Starvin during cold stress and recovery from chill coma. Insect Biochemistry and Molecular Biology, 2010, 40, 425-428.	1.2	45
277	A Re-Examination of Wolbachia-Induced Cytoplasmic Incompatibility in California Drosophila simulans. PLoS ONE, 2011, 6, e22565.	1.1	45
278	Polymorphism in the <i>couch potato</i> gene clines in eastern Australia but is not associated with ovarian dormancy in <i>Drosophila melanogaster</i> Molecular Ecology, 2011, 20, 2973-2984.	2.0	45
279	Population Genetic Structure of Aedes (Stegomyia) aegypti (L.) at a Micro-Spatial Scale in Thailand: Implications for a Dengue Suppression Strategy. PLoS Neglected Tropical Diseases, 2013, 7, e1913.	1.3	45
280	Life stages of an aphid living under similar thermal conditions differ in thermal performance. Journal of Insect Physiology, 2017, 99, 1-7.	0.9	45
281	Extensive Genetic Differentiation between Homomorphic Sex Chromosomes in the Mosquito Vector, Aedes aegypti. Genome Biology and Evolution, 2017, 9, 2322-2335.	1.1	45
282	Vertical Transmission of Wolbachia Is Associated With Host Vitellogenin in Laodelphax striatellus. Frontiers in Microbiology, 2018, 9, 2016.	1.5	45
283	Title is missing!. Experimental and Applied Acarology, 1997, 21, 151-162.	0.7	44
284	The Utility of DNA Markers in Classical Taxonomy: Using Cytochrome Oxidase I Markers to Differentiate Australian <i>Cladopelma</i> (Diptera: Chironomidae) Midges. Annals of the Entomological Society of America, 2005, 98, 587-594.	1.3	44
285	Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: How much environmental control is needed?. Integrative Zoology, 2018, 13, 355-371.	1.3	44
286	Opportunities and challenges in assessing climate change vulnerability through genomics. Cell, 2021, 184, 1420-1425.	13.5	44
287	Validating measurements of acclimation for climate change adaptation. Current Opinion in Insect Science, 2020, 41, 7-16.	2.2	44
288	Genetic divergence under uniform selection. III. Selection for knockdown resistance to ethanol in Drosophila pseudoobscura populations and their replicate lines. Heredity, 1987, 58, 425-433.	1.2	43

#	Article	IF	CITATIONS
289	Field and laboratory evidence for acclimation without costs in an egg parasitoid. Functional Ecology, 2001, 15, 217-221.	1.7	43
290	Biology, ecology and control of the Penthaleus species complex (Acari: Penthaleidae). Experimental and Applied Acarology, 2004, 34, 211-237.	0.7	43
291	Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome, 2020, 8, 104.	4.9	43
292	Olfactory response and resource utilization in Drosophila: interspecific comparisons. Biological Journal of the Linnean Society, 1984, 22, 43-53.	0.7	42
293	Effects of stress combinations on the expression of additive genetic variation for fecundity in Drosophila melanogaster. Genetical Research, 1998, 72, 13-18.	0.3	42
294	Mapping Regions Within Cosmopolitan Inversion <i>In(3R)Payne</i> Associated With Natural Variation in Body Size in <i>Drosophila melanogaster</i> . Genetics, 2007, 177, 549-556.	1.2	42
295	Genetic Structure of <i> Aedes aegypti < /i > in Australia and Vietnam Revealed by Microsatellite and Exon Primed Intron Crossing Markers Suggests Feasibility of Local Control Options. Journal of Medical Entomology, 2009, 46, 1074-1083.</i>	0.9	42
296	Adult heat tolerance variation in <i>Drosophila melanogaster</i> is not related to Hsp70 expression. Journal of Experimental Zoology, 2010, 313A, 35-44.	1.2	42
297	Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology, 2011, 20, 595-606.	1.1	42
298	Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. New Phytologist, 2021, 232, 802-817.	3.5	42
299	ENVIRONMENTAL EFFECTS ON REMATING IN <i>DROSOPHILA MELANOGASTER</i> . Evolution; International Journal of Organic Evolution, 1988, 42, 312-321.	1.1	41
300	Wing Shape and Wing Size Changes as Indicators of Environmental Stress inHelicoverpa punctigera(Lepidoptera: Noctuidae) Moths: Comparing Shifts in Means, Variances, and Asymmetries. Environmental Entomology, 2002, 31, 965-971.	0.7	41
301	HSP90 AND THE QUANTITATIVE VARIATION OF WING SHAPE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2006, 60, 2529.	1.1	41
302	Testing evolutionary hypotheses about species borders: patterns of genetic variation towards the southern borders of two rainforest <i>Drosophila</i> and a related habitat generalist. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1517-1526.	1.2	41
303	Experimental warming and long-term vegetation dynamics in an alpine heathland. Australian Journal of Botany, 2013, 61, 36.	0.3	41
304	Using <i>Wolbachia</i> àâ€based release for suppression of <i>Aedes</i> mosquitoes: insights from genetic data and population simulations. Ecological Applications, 2014, 24, 1226-1234.	1.8	41
305	Infertility and fecundity loss of Wolbachia-infected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics. PLoS Neglected Tropical Diseases, 2021, 15, e0009179.	1.3	41
306	Hsp90 and the quantitative variation of wing shape in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 2006, 60, 2529-38.	1.1	41

#	Article	IF	Citations
307	INTENSE SELECTION OF MITE CLONES IN A HETEROGENEOUS ENVIRONMENT. Evolution; International Journal of Organic Evolution, 1998, 52, 1325-1333.	1.1	40
308	Persistence of experience effects in the parasitoid Trichogramma nr. brassicae. Ecological Entomology, 1998, 23, 110-117.	1.1	40
309	LIMITS TO THE SOUTHERN BORDER OF <i>DROSOPHILA SERRATA </i> VARIATION, AND TRADE-OFFS. Evolution; International Journal of Organic Evolution, 1999, 53, 1823-1834.	1.1	40
310	Strategies for control of the redlegged earth mite in Australia. Australian Journal of Experimental Agriculture, 2008, 48, 1506.	1.0	40
311	Monitoring long-term evolutionary changes following <i>Wolbachia</i> introduction into a novel host: the <i>Wolbachia popcorn</i> infection in <i>Drosophila simulans</i> . Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2059-2068.	1.2	40
312	Predicting the spread of <i>Aedes albopictus </i> in Australia under current and future climates: Multiple approaches and datasets to incorporate potential evolutionary divergence. Austral Ecology, 2014, 39, 469-478.	0.7	40
313	Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus. PLoS Neglected Tropical Diseases, 2017, 11, e0006009.	1.3	40
314	Environmental variation partitioned into separate heritable components. Evolution; International Journal of Organic Evolution, 2018, 72, 136-152.	1.1	40
315	Evolutionary divergence of mitochondrial genomes in two <i>Tetranychus</i> species distributed across different climates. Insect Molecular Biology, 2018, 27, 698-709.	1.0	40
316	Tracking genetic invasions: Genomeâ€wide single nucleotide polymorphisms reveal the source of pyrethroidâ€resistant <i>Aedes aegypti</i> (yellow fever mosquito) incursions at international ports. Evolutionary Applications, 2019, 12, 1136-1146.	1.5	40
317	A decade of stability for wMel Wolbachia in natural Aedes aegypti populations. PLoS Pathogens, 2022, 18, e1010256.	2.1	40
318	The pest status and distribution of three cryptic blue oat mite species (Penthaleus spp.) and redlegged earth mite (Halotydeus destructor) in southeastern Australia. Experimental and Applied Acarology, 2001, 25, 699-716.	0.7	39
319	Thermal Sensitivity of Aedes aegypti From Australia: Empirical Data and Prediction of Effects on Distribution. Journal of Medical Entomology, 2011, 48, 914-923.	0.9	39
320	Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasites and Vectors, 2015, 8, 610.	1.0	39
321	Climatic warming strengthens a positive feedback between alpine shrubs and fire. Global Change Biology, 2017, 23, 3249-3258.	4.2	39
322	Toxicity of Chemicals Commonly Used in Indonesian Vegetable Crops to Liriomyza huidobrensis Populations and the Indonesian Parasitoids Hemiptarsenus varicornis, Opius sp., and Gronotoma micromorpha, as well as the Australian parasitoids Hemiptarsenus varicornis and Diglyphus isaea. Journal of Economic Entomology, 2004, 97, 1191-1197.	0.8	38
323	Limitations to Reproductive Output and Genetic Rescue in Populations of the Rare Shrub Grevillea repens (Proteaceae). Annals of Botany, 2008, 102, 1031-1041.	1.4	38
324	The distribution of wheat curl mite (<i>Aceria tosichella</i>) lineages in Australia and their potential to transmit wheat streak mosaic virus. Annals of Applied Biology, 2009, 155, 371-379.	1.3	38

#	Article	IF	Citations
325	New Levels of Transcriptome Complexity at Upper Thermal Limits in Wild <i>Drosophila</i> Revealed by Exon Expression Analysis. Genetics, 2013, 195, 809-830.	1.2	38
326	Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in <i>Drosophila melanogaster</i> . American Naturalist, 2015, 186, 582-593.	1.0	38
327	Laboratory selection for resistance to sulfoxaflor and fitness costs in the green peach aphid Myzus persicae. Journal of Asia-Pacific Entomology, 2018, 21, 408-412.	0.4	38
328	<i>>Wolbachia</i> >â€induced apoptosis associated with increased fecundity in <i>Laodelphax striatellus</i> (Hemiptera: Delphacidae). Insect Molecular Biology, 2018, 27, 796-807.	1.0	38
329	Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity, 2019, 122, 315-325.	1.2	38
330	Desiccation Resistance in Interspecific Drosophila Crosses: Genetic Interactions and Trait Correlations. Genetics, 1999, 151, 1493-1502.	1.2	38
331	Habitat selection: Olfactory response of Drosophila melanogaster depends on resources. Heredity, 1984, 53, 139-143.	1.2	37
332	Early adult experience in Drosophila melanogaster. Journal of Insect Physiology, 1988, 34, 197-204.	0.9	37
333	Environmental Effects on Remating in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1988, 42, 312.	1.1	37
334	Inbreeding and incompatibility in <i>Trichogramma</i> nr. <i>brassicae</i> : evidence and implications for quality control. Entomologia Experimentalis Et Applicata, 1996, 78, 283-290.	0.7	37
335	The detrimental acclimation hypothesis. Trends in Ecology and Evolution, 2002, 17, 407-408.	4.2	37
336	Effect of remnant vegetation, pesticides, and farm management on abundance of the beneficial predator Notonomus gravis (Chaudoir) (Coleoptera: Carabidae). Biological Control, 2008, 46, 83-93.	1.4	37
337	Low evolutionary potential for egg-to-adult viability in <i>Drosophila melanogaster</i> at high temperatures. Evolution; International Journal of Organic Evolution, 2015, 69, 803-814.	1.1	37
338	Climate adaptation and ecological restoration in eucalypts. Proceedings of the Royal Society of Victoria, 2016, 128, 40.	0.3	37
339	Diapause and implications for control of Penthaleus species and Halotydeus destructor (Acari:) Tj ETQq $1\ 1\ 0.784$	314.rgBT	Oggrlock 10
340	Identification and characterization of Trichogramma species from south-eastern Australia using the internal transcribed spacer 2 (ITS-2) region of the ribosomal gene complex. Entomologia Experimentalis Et Applicata, 2003, 106, 235-240.	0.7	36
341	Overwintering of Trichogramma funiculatum Carver (Hymenoptera: Trichogrammatidae) Under Semi-Natural Conditions. Environmental Entomology, 2003, 32, 290-298.	0.7	36
342	Candidate Genes Detected in Transcriptome Studies Are Strongly Dependent on Genetic Background. PLoS ONE, 2011, 6, e15644.	1.1	36

#	Article	IF	CITATIONS
343	Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control. Evolutionary Applications, 2015, 8, 901-915.	1.5	36
344	An <scp>I</scp> nternational <scp>U</scp> nion for the <scp>C</scp> onservation of <scp>N</scp> ature <scp>R</scp> ed <scp>L</scp> ist ecosystems risk assessment for alpine snow patch herbfields, <scp>S</scp> outhâ€ <scp>E</scp> astern <scp>A</scp> ustralia. Austral Ecology, 2015, 40, 433-443.	0.7	36
345	Climate contributes to the evolution of pesticide resistance. Global Ecology and Biogeography, 2018, 27, 223-232.	2.7	36
346	Aedes aegypti insecticide resistance underlies the success (and failure) of Wolbachia population replacement. Scientific Reports, 2020, 10, 63.	1.6	36
347	How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200119.	1.8	36
348	Effects of preâ€adult and adult experience on host acceptance in choice and nonâ€choice tests in two strains of <i>Trichogramma</i> . Entomologia Experimentalis Et Applicata, 1995, 76, 49-58.	0.7	35
349	A naturally occurring variant of Hsp90 that is associated with decanalization. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2049-2057.	1.2	35
350	A multi-platform metabolomics approach demonstrates changes in energy metabolism and the transsulfuration pathway in Chironomus tepperi following exposure to zinc. Aquatic Toxicology, 2015, 162, 54-65.	1.9	35
351	Heritability and evolvability of fitness and nonfitness traits: Lessons from livestock. Evolution; International Journal of Organic Evolution, 2016, 70, 1770-1779.	1.1	35
352	Rapid genetic structuring of populations of the invasive fall webworm in relation to spatial expansion and control campaigns. Diversity and Distributions, 2016, 22, 1276-1287.	1.9	35
353	Low genetic diversity but strong population structure reflects multiple introductions of western flower thrips (Thysanoptera: Thripidae) into China followed by humanâ€mediated spread. Evolutionary Applications, 2017, 10, 391-401.	1.5	35
354	Pests of germinating grain crops in southern Australia: an overview of their biology and management options. Australian Journal of Experimental Agriculture, 2008, 48, 1560.	1.0	35
355	Limited benefits of non-crop vegetation on spiders in Australian vineyards: regional or crop differences?. BioControl, 2012, 57, 541-552.	0.9	34
356	Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest <i>Drosophila</i> : beyond laboratory estimates. Global Change Biology, 2017, 23, 1847-1860.	4.2	34
357	Can high-throughput sequencing detect macroinvertebrate diversity for routine monitoring of an urban river?. Ecological Indicators, 2018, 85, 440-450.	2.6	34
358	Heterogeneous genetic invasions of three insecticide resistance mutations in Indoâ€Pacific populations of ⟨i⟩Aedes aegypti⟨/i⟩ (L.). Molecular Ecology, 2020, 29, 1628-1641.	2.0	34
359	Cross-Generation Effects for Cold Resistance in Tropical Populations of Drosophila-Melanogaster and Drosophila-Simulans. Australian Journal of Zoology, 1995, 43, 51.	0.6	33
360	Correlations between measures of heat resistance and acclimation in two species of Drosophila and their hybrids. Biological Journal of the Linnean Society, 1998, 64, 449-462.	0.7	33

#	Article	IF	CITATIONS
361	The biology of Penthaleus species in southeastern Australia. Entomologia Experimentalis Et Applicata, 1999, 92, 179-189.	0.7	33
362	Additional tests on the effects of pesticides on cryptic species of blue oat mite (Penthaleus spp.) and the redlegged earth mite (Halotydeus destructor). Australian Journal of Experimental Agriculture, 2000, 40, 671.	1.0	33
363	Effective trapping methods for assessing invertebrates in vineyards. Australian Journal of Experimental Agriculture, 2004, 44, 947.	1.0	33
364	The effects of local selection versus dispersal on insecticide resistance patterns: longitudinal evidence from diamondback moth (Plutella xylostella (Lepidoptera: Plutellidae)) in Australia evolving resistance to pyrethroids. Bulletin of Entomological Research, 2008, 98, 145-157.	0.5	33
365	Emergence of the overwintering generation of peach fruit moth (Carposina sasakii) depends on diapause and spring soil temperatures. Journal of Insect Physiology, 2016, 86, 32-39.	0.9	33
366	Wolbachia -induced loss of male fertility is likely related to branch chain amino acid biosynthesis and iLvE in Laodelphax striatellus. Insect Biochemistry and Molecular Biology, 2017, 85, 11-20.	1.2	33
367	Cross-Generational Effects of Heat Stress on Fitness and Wolbachia Density in Aedes aegypti Mosquitoes. Tropical Medicine and Infectious Disease, 2019, 4, 13.	0.9	33
368	A TEST OF THE ROLE OF EPISTASIS IN DIVERGENCE UNDER UNIFORM SELECTION. Evolution; International Journal of Organic Evolution, 1989, 43, 766-774.	1.1	32
369	Heritable Variation for Territorial Success in Field-Collected Drosophila melanogaster. American Naturalist, 1991, 138, 668-679.	1.0	32
370	ESTIMATING THE HERITABILITY OF FLUCTUATING ASYMMETRY IN FIELD <i>DROSOPHILA</i> International Journal of Organic Evolution, 1998, 52, 816-824.	1.1	32
371	Molecular, morphological and behavioural data reveal the presence of a cryptic species in the widely studied Drosophila serrata species complex. Journal of Evolutionary Biology, 2004, 17, 430-442.	0.8	32
372	Assessing the relative importance of environmental effects, carry-over effects and species differences in thermal stress resistance: a comparison of Drosophilids across field and laboratory generations. Journal of Experimental Biology, 2013, 216, 3790-8.	0.8	32
373	Local and regional scale habitat heterogeneity contribute to genetic adaptation in a commercially important marine mollusc (<i>Haliotis rubra</i>) from southeastern Australia. Molecular Ecology, 2019, 28, 3053-3072.	2.0	32
374	Characterizing Trichogramma (Hymenoptera: Trichogrammatidae) Species for Biocontrol of Light Brown Apple Moth (Lepidoptera: Tortricidae) in Grapevines in Australia. Annals of the Entomological Society of America, 1997, 90, 128-137.	1.3	31
375	Frequency-dependent selection maintains clonal diversity in an asexual organism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17872-17877.	3.3	31
376	Molecular Basis of Adaptive Shift in Body Size in Drosophila melanogaster: Functional and Sequence Analyses of the Dca Gene. Molecular Biology and Evolution, 2011, 28, 2393-2402.	3.5	31
377	A combination of molecular and morphological approaches resolves species in the taxonomically difficult genus <i>Procladius</i> Skuse (Diptera: Chironomidae) despite high intra-specific morphological variation. Bulletin of Entomological Research, 2011, 101, 505-519.	0.5	31
378	Rapid adaptation of invertebrate pests to climatic stress?. Current Opinion in Insect Science, 2017, 21, 7-13.	2.2	31

#	Article	IF	CITATIONS
379	Pyrethroid Susceptibility Has Been Maintained in the Dengue Vector, Aedes aegypti (Diptera: Culicidae), in Queensland, Australia. Journal of Medical Entomology, 2017, 54, 1649-1658.	0.9	31
380	A genomic approach to identify and monitor a novel pyrethroid resistance mutation in the redlegged earth mite, Halotydeus destructor. Pesticide Biochemistry and Physiology, 2018, 144, 83-90.	1.6	31
381	A Wolbachia infection from Drosophila that causes cytoplasmic incompatibility despite low prevalence and densities in males. Heredity, 2019, 122, 428-440.	1.2	31
382	Chromosomeâ€level assembly of the melon thrips genome yields insights into evolution of a sapâ€sucking lifestyle and pesticide resistance. Molecular Ecology Resources, 2020, 20, 1110-1125.	2.2	31
383	Spatial population genomics of a recent mosquito invasion. Molecular Ecology, 2021, 30, 1174-1189.	2.0	31
384	Developing an Ecotoxicological Testing Standard for Predatory Mites in Australia: Acute and Sublethal Effects of Fungicides on <1>Euseius victoriensis 1 and <1>Galendromus occidentalis 1 (Acarina: Phytoseiidae). Journal of Economic Entomology, 2004, 97, 891-899.	0.8	30
385	Pesticide applications on Java potato fields are ineffective in controlling leafminers, and have antagonistic effects on natural enemies of leafminers. International Journal of Pest Management, 2005, 51, 181-187.	0.9	30
386	Identification of aphid species (Hemiptera: Aphididae: Aphidinae) using a rapid polymerase chain reaction restriction fragment length polymorphism method based on the <i>cytochrome oxidase</i> subunit I gene. Australian Journal of Entomology, 2007, 46, 305-312.	1.1	30
387	THE < i>POPCORN < / i> WOLBACHIA INFECTION OF < i> DROSOPHILA MELANOGASTER < / i>: CAN SELECTION ALTER WOLBACHIA LONGEVITY EFFECTS?. Evolution; International Journal of Organic Evolution, 2009, 63, 2648-2657.	1.1	30
388	Effect of woody vegetation at the landscape scale on the abundance of natural enemies in Australian vineyards. Biological Control, 2010, 54, 248-254.	1.4	30
389	Comparative phylogeography of alpine invertebrates indicates deep lineage diversification and historical refugia in the Australian Alps. Journal of Biogeography, 2015, 42, 89-102.	1.4	30
390	TropicalDrosophila pandoracarryWolbachiainfections causing cytoplasmic incompatibility or male killing. Evolution; International Journal of Organic Evolution, 2016, 70, 1791-1802.	1.1	30
391	Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations. Heredity, 2016, 116, 265-276.	1.2	30
392	Maintaining Aedes aegypti Mosquitoes Infected with Wolbachia . Journal of Visualized Experiments, 2017, , .	0.2	30
393	Population genomics of two invasive mosquitoes (Aedes aegypti and Aedes albopictus) from the Indo-Pacific. PLoS Neglected Tropical Diseases, 2020, 14, e0008463.	1.3	30
394	EFFECTS OF LONG-CHAIN HYDROCARBON–POLLUTED SEDIMENT ON FRESHWATER MACROINVERTEBRATES. Environmental Toxicology and Chemistry, 2005, 24, 2500.	2.2	29
395	Effect of E(sev) and Su(Raf) Hsp83 Mutants and Trans-heterozygotes on Bristle Trait Means and Variation in Drosophila melanogaster. Genetics, 2005, 171, 119-130.	1.2	29
396	A microcosm test of adaptation and species specific responses to polluted sediments applicable to indigenous chironomids (Diptera). Environmental Pollution, 2006, 139, 550-560.	3.7	29

#	Article	IF	CITATIONS
397	In search of clinal variation in the period and clock timing genes in Australian Drosophila melanogaster populations. Journal of Evolutionary Biology, 2006, 19, 551-557.	0.8	29
398	Linking Inbreeding Effects in Captive Populations with Fitness in the Wild: Release of Replicated <i>Drosophila melanogaster</i> Lines under Different Temperatures. Conservation Biology, 2008, 22, 189-199.	2.4	29
399	Rapid loss of genetic variation in an endangered possum. Biology Letters, 2008, 4, 134-138.	1.0	29
400	Facilitating <i>Wolbachia </i> introductions into mosquito populations through insecticide-resistance selection. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130371.	1.2	29
401	Contrasting patterns of population connectivity between regions in a commercially important mollusc <i>Haliotis rubra</i> : integrating population genetics, genomics and marine LiDAR data. Molecular Ecology, 2016, 25, 3845-3864.	2.0	29
402	Bioclimatic transect networks: Powerful observatories of ecological change. Ecology and Evolution, 2017, 7, 4607-4619.	0.8	29
403	Intense Selection of Mite Clones in a Heterogeneous Environment. Evolution; International Journal of Organic Evolution, 1998, 52, 1325.	1.1	28
404	Changes in the Heritability of Five Morphological Traits Under Combined Environmental Stresses in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1998, 52, 1207.	1,1	28
405	CHANGES IN THE HERITABILITY OF FIVE MORPHOLOGICAL TRAITS UNDER COMBINED ENVIRONMENTAL STRESSES IN (i) DROSOPHILA MELANOGASTER (i). Evolution; International Journal of Organic Evolution, 1998, 52, 1207-1212.	1.1	28
406	Is the heritability for courtship and mating speed in Drosophila (fruit fly) low?. Heredity, 1999, 82, 158-162.	1.2	28
407	Low diversity and high levels of population genetic structuring in introduced eastern mosquitofish (Gambusia holbrooki) in the greater Melbourne area, Australia. Biological Invasions, 2010, 12, 3727-3744.	1.2	28
408	Validation of In Vivo Magnetic Resonance Imaging Blood–Brain Barrier Permeability Measurements by Comparison With Gold Standard Histology. Stroke, 2011, 42, 2054-2060.	1.0	28
409	High Resolution Mapping of Candidate Alleles for Desiccation Resistance in Drosophila melanogaster under Selection. Molecular Biology and Evolution, 2012, 29, 1335-1351.	3.5	28
410	A Single Hot Event Stimulates Adult Performance but Reduces Egg Survival in the Oriental Fruit Moth, Grapholitha molesta. PLoS ONE, 2014, 9, e116339.	1.1	28
411	How well do revegetation plantings capture genetic diversity?. Biology Letters, 2019, 15, 20190460.	1.0	28
412	The importance of timing of heat events for predicting the dynamics of aphid pest populations. Pest Management Science, 2019, 75, 1866-1874.	1.7	28
413	Does Thermal Variability Experienced at the Egg Stage Influence Life History Traits across Life Cycle Stages in a Small Invertebrate?. PLoS ONE, 2014, 9, e99500.	1.1	28
414	Resistance to Pyrethroids in Helicoverpa armigera (Lepidoptera: Noctuidae) from Corn: Adult Resistance, Larval Resistance, and Fitness Effects. Journal of Economic Entomology, 1994, 87, 1165-1171.	0.8	27

#	Article	IF	CITATIONS
415	LEVELS OF VARIATION IN STRESS RESISTANCE IN DROSOPHILA AMONG STRAINS, LOCAL POPULATIONS, AND GEOGRAPHIC REGIONS: PATTERNS FOR DESICCATION, STARVATION, COLD RESISTANCE, AND ASSOCIATED TRAITS. Evolution; International Journal of Organic Evolution, 2001, 55, 1621.	1.1	27
416	Fluctuating asymmetry, fecundity and development time in Drosophila: is there an association under optimal and stress conditions?. Journal of Evolutionary Biology, 2002, 15, 146-157.	0.8	27
417	Evidence for host-associated clones of grape phylloxera Daktulosphaira vitifoliae (Hemiptera:) Tj ETQq1 1 0.7843	4 rgBT /O	verlock 10 T
418	Developing an Ecotoxicological Testing Standard for Predatory Mites in Australia: Acute and Sublethal Effects of Fungicides on Euseius victoriensis and Galendromus occidentalis (Acarina:) Tj ETQq0 0 0 rgBT	/ 0. ærlock	20 Tf 50 61
419	A genetic perspective on insect climate specialists. Australian Journal of Entomology, 2010, 49, 93-103.	1.1	27
420	Delineating closely related species with DNA barcodes for routine biological monitoring. Freshwater Biology, 2015, 60, 1545-1560.	1.2	27
421	A cryptic diapause strategy in <i>Halotydeus destructor</i> (Tucker) (Trombidiformes: Penthaleidae) induced by multiple cues. Pest Management Science, 2018, 74, 2618-2625.	1.7	27
422	Rapid spread of a <i>Wolbachia</i> infection that does not affect host reproduction in <i>Drosophila simulans</i> cage populations. Evolution; International Journal of Organic Evolution, 2018, 72, 1475-1487.	1.1	27
423	Geographical and interspecific variation in susceptibility of three common thrips species to the insecticide, spinetoram. Journal of Pest Science, 2021, 94, 93-99.	1.9	27
424	Does membrane feeding compromise the quality of Aedes aegypti mosquitoes?. PLoS ONE, 2019, 14, e0224268.	1.1	27
425	Consistent heritability changes under poor growth conditions. Trends in Ecology and Evolution, 1997, 12, 460-461.	4.2	26
426	Dispersal Patterns of Pest Earth Mites (Acari: Penthaleidae) in Pastures and Crops. Journal of Economic Entomology, 2000, 93, 1415-1423.	0.8	26
427	Distribution of Drosophila serrata Malloch (Diptera: Drosophilidae) in Australia with particular reference to the southern border. Australian Journal of Entomology, 2001, 40, 41-48.	1.1	26
428	Lack of genetic structure among ecologically adapted populations of an Australian rainforestDrosophilaspecies as indicated by microsatellite markers and mitochondrial DNA sequences. Molecular Ecology, 2007, 16, 1687-1700.	2.0	26
429	Global Warming: Fly Populations Are Responding Rapidly to Climate Change. Current Biology, 2007, 17, R16-R18.	1.8	26
430	Mortality of Australian alpine grasses (Poa spp.) after drought: species differences and ecological patterns. Journal of Plant Ecology, 2012, 5, 121-133.	1,2	26
431	Distribution of cryptic blue oat mite species in Australia: current and future climate conditions. Agricultural and Forest Entomology, 2012, 14, 127-137.	0.7	26
432	Patterns of genetic variation across inversions: geographic variation in the In(2L)t inversion in populations of Drosophila melanogaster from eastern Australia. BMC Evolutionary Biology, 2013, 13, 100.	3.2	26

#	Article	IF	CITATIONS
433	Cross-Study Comparison Reveals Common Genomic, Network, and Functional Signatures of Desiccation Resistance in <i>Drosophila melanogaster</i> 1053-1067.	3.5	26
434	Multiple refugia from penultimate glaciations in East Asia demonstrated by phylogeography and ecological modelling of an insect pest. BMC Evolutionary Biology, 2018, 18, 152.	3.2	26
435	Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. Science of the Total Environment, 2019, 695, 133753.	3.9	26
436	A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, <i>Bactrocera dorsalis</i> and <i>Bactrocera correcta</i> Evolutionary Applications, 2019, 12, 1147-1163.	1. 5	26
437	The spread of resistance to imidacloprid is restricted by thermotolerance in natural populations of Drosophila melanogaster. Nature Ecology and Evolution, 2019, 3, 647-656.	3.4	26
438	The Effect of Resource Subdivision on Genetic Variation in Drosophila. American Naturalist, 1985, 125, 421-430.	1.0	26
439	The effects of acclimation and rearing conditions on the response of tropical and temperate populations of Drosophila melanogaster and D. simulans to a temperature gradient (Diptera:) Tj ETQq $1\ 1\ 0.7843$	14 cg& T /C	Ove do ck 10 Tf
440	Title is missing!. Journal of Insect Behavior, 1998, 11, 129-148.	0.4	25
441	Competitive Interactions Between Two Pest Species of Earth Mites, <l>Halotydeus destructor</l> and <l>Penthaleus major</l> (Acarina: Penthaleidae). Journal of Economic Entomology, 2000, 93, 1183-1191.	0.8	25
442	Laboratory Fecundity as Predictor of Field Success in Trichogramma carverae (Hymenoptera:) Tj ETQq0 0 0 rgBT	/Overlock 0.8	10 Tf 50 382
443	Does mass rearing of field collected Trichogramma brassicae wasps influence acceptance of European corn borer eggs?. Entomologia Experimentalis Et Applicata, 2003, 109, 197-203.	0.7	25
444	Monitoring salt stress in grapevines: are measures of plant trait variability useful?. Journal of Applied Ecology, 2003, 40, 928-937.	1.9	25
445	Field dispersal and host location of Trichogramma brassicae is influenced by wing size but not wing shape. Biological Control, 2004, 31, 1-10.	1.4	25
446	Divergent levels of genetic variation and ploidy among populations of the rare shrub, Grevillea repens (Proteaceae). Conservation Genetics, 2009, 10, 827-837.	0.8	25
447	Did hybridization save the Norfolk Island boobook owl <i>Ninox novaeseelandiae undulata?</i> . Oryx, 2011, 45, 500-504.	0.5	25
448	Warming Accelerates Carbohydrate Consumption in the Diapausing Overwintering Peach Fruit Moth <i>Carposina sasakii</i> (Lepidoptera: Carposinidae). Environmental Entomology, 2016, 45, 1287-1293.	0.7	25
449	Continued Susceptibility of the wMel Wolbachia Infection in Aedes aegypti to Heat Stress Following Field Deployment and Selection. Insects, 2018, 9, 78.	1.0	25
450	A change in the bacterial community of spider mites decreases fecundity on multiple host plants. MicrobiologyOpen, 2019, 8, e00743.	1.2	25

#	Article	IF	CITATIONS
451	Chromosomeâ∈level genome of the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae) provides a resource for evolutionary studies on moths. Molecular Ecology Resources, 2021, 21, 834-848.	2.2	25
452	Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity, 1999, 83, 637-643.	1.2	25
453	HERITABLE VARIATION FOR FECUNDITY IN FIELD-COLLECTED <i>DROSOPHILA MELANOGASTER</i> OFFSPRING REARED UNDER DIFFERENT ENVIRONMENTAL TEMPERATURES. Evolution; International Journal of Organic Evolution, 1998, 52, 134-143.	1.1	24
454	Thermal adaptation inDrosophila serrata under conditions linked to its southern border: Unexpected patterns from laboratory selection suggest limited evolutionary potential. Journal of Genetics, 2003, 82, 179-189.	0.4	24
455	The ReFuGe 2020 Consortium—using "omics―approaches to explore the adaptability and resilience of coral holobionts to environmental change. Frontiers in Marine Science, 2015, 2, .	1.2	24
456	Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure. Cell Stress and Chaperones, 2016, 21, 653-663.	1.2	24
457	Summer diapause intensity influenced by parental and offspring environmental conditions in the pest mite, Halotydeus destructor. Journal of Insect Physiology, 2019, 114, 92-99.	0.9	24
458	A field cage test of the effects of the endosymbiont Wolbachia on Drosophila melanogaster. , 0, .		24
459	Plant cues influence searching behaviour and parasitism in the egg parasitoid Trichogramma nr. brassicae. Ecological Entomology, 1998, 23, 355-362.	1.1	23
460	Resistance to temperature extremes between and within life cycle stages in Drosophila serrata, D. birchii and their hybrids: intraspecific and interspecific comparisons. Biological Journal of the Linnean Society, 2000, 71, 403-416.	0.7	23
461	Microsatellite markers and mtDNA data indicate two distinct groups in dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae), a threatened freshwater fish from south-eastern Australia. Conservation Genetics, 2010, 11, 1911-1928.	0.8	23
462	Scaleâ€dependent thermal tolerance variation in Australian mountain grasshoppers. Ecography, 2016, 39, 572-582.	2.1	23
463	Landscape genomics reveals altered genome wide diversity within revegetated stands of <i>Eucalyptus microcarpa</i> (Grey Box). New Phytologist, 2016, 212, 992-1006.	3.5	23
464	Detecting copper toxicity in sediments: from the subindividual level to the population level. Journal of Applied Ecology, 2017, 54, 1331-1342.	1.9	23
465	Toxicity of seven insecticides to different developmental stages of the whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) in multiple field populations of China. Ecotoxicology, 2018, 27, 742-751.	1.1	23
466	Wolbachia Genome Stability and mtDNA Variants in Aedes aegypti Field Populations Eight Years after Release. IScience, 2020, 23, 101572.	1.9	23
467	The response to flooding of two overwintering rice stem borers likely accounts for their changing impacts. Journal of Pest Science, 2021, 94, 451-461.	1.9	23
468	Geographic variation in the territorial success of Drosophila melanogaster males. Behavior Genetics, 1989, 19, 241-255.	1.4	22

#	Article	IF	CITATIONS
469	Mitochondrial DNA Polymorphism and Cytoplasmic Incompatibility in Natural Populations of Drosophila simulans. Evolution; International Journal of Organic Evolution, 1990, 44, 1383.	1.1	22
470	Translational asymmetry as a sensitive indicator of cadmium stress in plants: a laboratory test with wildâ€type and mutant Arabidopsis thaliana. New Phytologist, 2003, 159, 471-477.	3.5	22
471	Ecologically Sustainable Chemical Recommendations for Agricultural Pest Control?. Journal of Economic Entomology, 2007, 100, 1741-1750.	0.8	22
472	Slug control in Australian canola: monitoring, molluscicidal baits and economic thresholds. Pest Management Science, 2007, 63, 851-859.	1.7	22
473	The effects of sediment quality on benthic macroinvertebrates in the River Murray, Australia. Marine and Freshwater Research, 2009, 60, 70.	0.7	22
474	Microgeographic adaptation linked to forest fragmentation and habitat quality in the tropical fruit fly <i>Drosophila birchii</i> . Oikos, 2012, 121, 1627-1637.	1.2	22
475	Complexity of the genetic basis of ageing in nature revealed by a clinal study of lifespan and <i>methuselah</i> , a gene for ageing, in <i><scp>D</scp>rosophila</i> from eastern <scp>A</scp> ustralia. Molecular Ecology, 2013, 22, 3539-3551.	2.0	22
476	Invasion of <i><scp>W</scp>olbachia</i> at the residential block level is associated with local abundance of <i><scp>S</scp>tegomyia aegypti</i> yellow fever mosquito, populations and property attributes. Medical and Veterinary Entomology, 2014, 28, 90-97.	0.7	22
477	Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species. BMC Genomics, 2019, 20, 52.	1.2	22
478	Fine-scale genetic structure of grape phylloxera from the roots and leaves of Vitis. Heredity, 2004, 92, 118-127.	1.2	21
479	Hsp90 inhibition and the expression of phenotypic variability in the rainforest species Drosophila birchii. Biological Journal of the Linnean Society, 2007, 92, 457-465.	0.7	21
480	Environmental Stress-Dependent Effects of Deletions Encompassing Hsp70Ba on Canalization and Quantitative Trait Asymmetry in Drosophila melanogaster. PLoS ONE, 2011, 6, e17295.	1.1	21
481	Polymorphism in the <i>neurofibromin</i> gene, <i>Nf1</i> , is associated with antagonistic selection on wing size and development time in <i>Drosophila melanogaster</i> . Molecular Ecology, 2013, 22, 2716-2725.	2.0	21
482	Potential impact of climate change on parasitism efficiency of egg parasitoids: A meta-analysis of Trichogramma under variable climate conditions. Agriculture, Ecosystems and Environment, 2016, 231, 143-155.	2.5	21
483	Population analysis reveals genetic structure of an invasive agricultural thrips pest related to invasion of greenhouses and suitable climatic space. Evolutionary Applications, 2019, 12, 1868-1880.	1.5	21
484	Impacts of Low Temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-Infected Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2020, 57, 1567-1574.	0.9	21
485	Persistent deleterious effects of a deleterious Wolbachia infection. PLoS Neglected Tropical Diseases, 2020, 14, e0008204.	1.3	21
486	Numerical Changes and Resource Utilization in Orchard Populations of Drosophila Australian Journal of Zoology, 1985, 33, 875.	0.6	20

#	Article	IF	Citations
487	Changes in Grape Phylloxera Abundance in Ungrafted Vineyards. Journal of Economic Entomology, 2006, 99, 1774-1783.	0.8	20
488	Beneficial organisms as bioindicators for environmental sustainability in the grape industry in Australia. Australian Journal of Experimental Agriculture, 2007, 47, 404.	1.0	20
489	Fighting fly genes. Trends in Genetics, 2007, 23, 51-54.	2.9	20
490	Lack of Strong Local Adaptation in the Alpine Forb <i>Craspedia lamicola</i> in Southeastern Australia. International Journal of Plant Sciences, 2009, 170, 906-917.	0.6	20
491	Identifying factors determining the altitudinal distribution of the invasive pest leafminers <i>Liriomyza huidobrensis</i> Applicata, 2010, 135, 141-153.	0.7	20
492	Impact of groundcover manipulations within windbreaks on mite pests and their natural enemies. Australian Journal of Entomology, 2011, 50, 37-47.	1.1	20
493	Effective invertebrate pest management in dryland cropping in southern Australia: The challenge of marginality. Crop Protection, 2012, 42, 289-304.	1.0	20
494	Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse). Infection, Genetics and Evolution, 2013, 18, 191-201.	1.0	20
495	Modeling rates of life form cover change in burned and unburned alpine heathland subject to experimental warming. Oecologia, 2015, 178, 615-628.	0.9	20
496	Identification of two lineages of host-associated eriophyoid mites predisposed to different levels of host diversification. Molecular Phylogenetics and Evolution, 2016, 105, 235-240.	1.2	20
497	Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180547.	1.8	20
498	Origin of resistance to pyrethroids in the redlegged earth mite (<i>Halotydeus destructor</i>) in Australia: repeated local evolution and migration. Pest Management Science, 2020, 76, 509-519.	1.7	20
499	Incursion pathways of the <scp>Asian</scp> tiger mosquito (<scp><i>Aedes albopictus</i></scp>) into <scp>Australia</scp> contrast sharply with those of the yellow fever mosquito (<scp><i>Aedes) Tj ETQq1 1 0.78</i></scp>	4 317 4 rgBT	⁻/ 2v erlock 10
500	Potential for biological control of the vegetable leafminer, <i>Liriomyza sativae</i> (Diptera:) Tj ETQq0 0 0 rgBT /	Overlock 1	0 ₂₀ 50 222 ⁻
501	Extreme climate shifts pest dominance hierarchy through thermal evolution and transgenerational plasticity. Functional Ecology, 2021, 35, 1524-1537.	1.7	20
502	A <i>w</i> AlbB <i>Wolbachia</i> Transinfection Displays Stable Phenotypic Effects across Divergent Aedes aegypti Mosquito Backgrounds. Applied and Environmental Microbiology, 2021, 87, e0126421.	1.4	20
503	Interspecific Variation in the Response of Drosophila to Chemicals and Fruit Odours in a Wind Tunnel Australian Journal of Zoology, 1985, 33, 451.	0.6	20
504	Female encounter rates and fighting costs of males are associated with lek size in Drosophila mycetophaga. Behavioral Ecology and Sociobiology, 1998, 42, 163-169.	0.6	19

#	Article	IF	CITATIONS
505	Laboratory Fecundity as Predictor of Field Success in <l>Trichogramma carverae</l> (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology, 2002, 95, 912-917.	0.8	19
506	Influence of native ants on arthropod communities in a vineyard. Agricultural and Forest Entomology, 2010, 12, 223-232.	0.7	19
507	Physical and Linkage Maps for <i>Drosophila serrata </i> , a Model Species for Studies of Clinal Adaptation and Sexual Selection. G3: Genes, Genomes, Genetics, 2012, 2, 287-297.	0.8	19
508	Food limitation in Chironomus tepperi: Effects on survival, sex ratios and development across two generations. Ecotoxicology and Environmental Safety, 2012, 84, 1-8.	2.9	19
509	Transgenerational effects of parental nutritional status on offspring development time, survival, fecundity, and sensitivity to zinc in Chironomus tepperi midges. Ecotoxicology and Environmental Safety, 2014, 110, 1-7.	2.9	19
510	Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 162, 1-6.	1.3	19
511	Stress Responses of Small Heat Shock Protein Genes in Lepidoptera Point to Limited Conservation of Function across Phylogeny. PLoS ONE, 2015, 10, e0132700.	1.1	19
512	Predicting the timing of first generation egg hatch for the pest redlegged earth mite Halotydeus destructor (Acari: Penthaleidae). Experimental and Applied Acarology, 2015, 65, 259-276.	0.7	19
513	The queenslandensis and the type Form of the Dengue Fever Mosquito (Aedes aegypti L.) Are Genomically Indistinguishable. PLoS Neglected Tropical Diseases, 2016, 10, e0005096.	1.3	19
514	Biodiversity responds to increasing climatic extremes in a biome-specific manner. Science of the Total Environment, 2018, 634, 382-393.	3.9	19
515	Independently evolved and gene flowâ€accelerated pesticide resistance in twoâ€spotted spider mites. Ecology and Evolution, 2019, 9, 2206-2219.	0.8	19
516	Anthropogenic and natural barriers affect genetic connectivity in an Alpine butterfly. Molecular Ecology, 2021, 30, 114-130.	2.0	19
517	A phylogeny for the Drosophila montium species group: A model clade for comparative analyses. Molecular Phylogenetics and Evolution, 2021, 158, 107061.	1.2	19
518	Using invertebrate bioindicators to assess agricultural sustainability in Australia: proposals and current practices. Australian Journal of Experimental Agriculture, 2007, 47, 379.	1.0	19
519	The dangers of irreversibility in an age of increased uncertainty: revisiting plasticity in invertebrates. Oikos, 2022, 2022, .	1.2	19
520	Additional data on Trypanosoma cruzi isozymic strains encountered in Bolivian domestic transmission cycles. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1986, 80, 442-447.	0.7	18
521	HERITABLE VARIATION IN RESOURCE UTILIZATION AND RESPONSE IN A WINERY POPULATION OF <i>DROSOPHILA MELANOGASTER </i> . Evolution; International Journal of Organic Evolution, 1991, 45, 1000-1015.	1.1	18
522	Immunocontraception for population control: Will resistance evolve?. Immunology and Cell Biology, 2003, 81, 152-159.	1.0	18

#	Article	IF	Citations
523	Inversion frequencies in Drosophila serrata along an eastern Australian transect. Genome, 2004, 47, 1144-1153.	0.9	18
524	Population genetics of the wheat curl mite (<i>Aceria tosichella</i> Keifer) in Australia: implications for the management of wheat pathogens. Bulletin of Entomological Research, 2012, 102, 199-212.	0.5	18
525	Effect of <i>Wolbachia</i> on insecticide susceptibility in lines of <i>Aedes aegypti</i> Bulletin of Entomological Research, 2013, 103, 269-277.	0.5	18
526	Ground cover and floral resources in shelterbelts increase the abundance of beneficial hymenopteran families. Agricultural and Forest Entomology, 2015, 17, 120-128.	0.7	18
527	Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae). Environmental Pollution, 2016, 216, 198-207.	3.7	18
528	Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?. Journal of Insect Physiology, 2017, 102, 36-41.	0.9	18
529	Measuring the effects of reduced snow cover on Australia's alpine arthropods. Austral Ecology, 2017, 42, 844-857.	0.7	18
530	Testing the nicheâ€breadth–rangeâ€size hypothesis: habitat specialization vs. performance in Australian alpine daisies. Ecology, 2017, 98, 2708-2724.	1.5	18
531	Environmental Concentrations of Antibiotics May Diminish Wolbachia infections in Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2019, 56, 1078-1086.	0.9	18
532	Migration trajectories of the diamondback moth Plutella xylostella in China inferred from population genomic variation. Pest Management Science, 2021, 77, 1683-1693.	1.7	18
533	An endangered flightless grasshopper with strong genetic structure maintains population genetic variation despite extensive habitat loss. Ecology and Evolution, 2021, 11, 5364-5380.	0.8	18
534	Emerging pest mites of grains (Balaustium medicagoense and Bryobia sp.) show high levels of tolerance to currently registered pesticides. Australian Journal of Experimental Agriculture, 2008, 48, 1126.	1.0	18
535	Phenotypic Plasticity for Desiccation Resistance, Climate Change, and Future Species Distributions: Will Plasticity Have Much Impact?. American Naturalist, 2020, 196, 306-315.	1.0	18
536	Genome-Wide Transcription Analysis of Clinal Genetic Variation in Drosophila. PLoS ONE, 2012, 7, e34620.	1.1	18
537	Estimating the Heritability of Fluctuating Asymmetry in Field Drosophila. Evolution; International Journal of Organic Evolution, 1998, 52, 816.	1.1	17
538	GEOGRAPHIC PATTERNS OF CLONAL DIVERSITY IN THE EARTH MITE SPECIES PENTHALEUS MAJOR WITH PARTICULAR EMPHASIS ON SPECIES MARGINS. Evolution; International Journal of Organic Evolution, 2002, 56, 1160-1167.	1.1	17
539	Effects of sediment quality on macroinvertebrates in the Sunraysia region of the Murray–Darling Rivers, Australia. Environmental Pollution, 2008, 156, 689-698.	3.7	17
540	NO INBREEDING DEPRESSION FOR LOW TEMPERATURE DEVELOPMENTAL ACCLIMATION ACROSS MULTIPLE DROSOPHILA SPECIES. Evolution; International Journal of Organic Evolution, 2011, 65, 3195-3201.	1.1	17

#	Article	IF	Citations
541	Does Bdellodes lapidaria (Acari: Bdellidae) have a role in biological control of the springtail pest, Sminthurus viridis (Collembola: Sminthuridae) in south-eastern Australia?. Biological Control, 2011, 58, 222-229.	1.4	17
542	Pest management challenges for biofuel crop production. Current Opinion in Environmental Sustainability, 2011, 3, 95-99.	3.1	17
543	Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis. BMC Evolutionary Biology, 2014, 14, 204.	3.2	17
544	Foundations for the future: A longâ€ŧerm plan for <scp>A</scp> ustralian ecosystem science. Austral Ecology, 2014, 39, 739-748.	0.7	17
545	A collection of Australian Drosophila datasets on climate adaptation and species distributions. Scientific Data, 2015, 2, 150067.	2.4	17
546	Genetic analysis along an invasion pathway reveals endemic cryptic taxa, but a single species with little population structure in the introduced range. Diversity and Distributions, 2016, 22, 57-72.	1.9	17
547	The roles of age, parentage and environment on bacterial and algal endosymbiont communities in <i>Acropora </i> i> Corals. Molecular Ecology, 2019, 28, 3830-3843.	2.0	17
548	Wide diurnal temperature variation inhibits larval development and adult reproduction in the diamondback moth. Journal of Thermal Biology, 2019, 84, 8-15.	1.1	17
549	Detoxification Genes Differ Between Cactus-, Fruit-, and Flower-Feeding <i>Drosophila </i> Journal of Heredity, 2019, 110, 80-91.	1.0	17
550	<i>Wolbachia</i> dominate <i>Spiroplasma</i> in the coâ€infected spider mite <i>Tetranychus truncatus</i> . Insect Molecular Biology, 2020, 29, 19-37.	1.0	17
551	Increased density of endosymbiotic Buchnera related to pesticide resistance in yellow morph of melon aphid. Journal of Pest Science, 2020, 93, 1281-1294.	1.9	17
552	Commercial Agrochemical Applications in Vineyards Do Not Influence Ant Communities. Environmental Entomology, 2007, 36, 1374-1383.	0.7	16
553	Developing and Testing a Diagnostic Probe for Grape Phylloxera Applicable to Soil Samples. Journal of Economic Entomology, 2008, 101, 1934-1943.	0.8	16
554	Synthetic Pesticides in Agro-Ecosystems: Are They as Detrimental to Nontarget Invertebrate Fauna as We Suspect?. Journal of Economic Entomology, 2013, 106, 756-775.	0.8	16
555	Assessing the current and future biological control potential of <i>Trichogramma ostriniae</i> on its hosts <i>Ostrinia furnacalis</i> and <scp><i>Ostrinia nubilalis</i> </scp> . Pest Management Science, 2018, 74, 1513-1523.	1.7	16
556	Preference and performance of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) on strawberry cultivars. Experimental and Applied Acarology, 2018, 76, 185-196.	0.7	16
557	Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Global Ecology and Conservation, 2019, 18, e00638.	1.0	16
558	Predicting the spatial dynamics of <i>Wolbachia</i> infections in <i>Aedes aegypti</i> arbovirus vector populations in heterogeneous landscapes. Journal of Applied Ecology, 2019, 56, 1674-1686.	1.9	16

#	Article	IF	Citations
559	Mitochondrial variation in small brown planthoppers linked to multiple traits and probably reflecting a complex evolutionary trajectory. Molecular Ecology, 2019, 28, 3306-3323.	2.0	16
560	Pyrethroid resistance in the pest mite, Halotydeus destructor: Dominance patterns and a new method for resistance screening. Pesticide Biochemistry and Physiology, 2019, 159, 9-16.	1.6	16
561	Climate, human influence and the distribution limits of the invasive European earwig, <scp><i>Forficula auricularia</i></scp> , in Australia. Pest Management Science, 2019, 75, 134-143.	1.7	16
562	Induced expression of small heat shock proteins is associated with thermotolerance in female Laodelphax striatellus planthoppers. Cell Stress and Chaperones, 2019, 24, 115-123.	1.2	16
563	Backgroundâ€dependent <i>Wolbachia</i> â€mediated insecticide resistance in <scp><i>Laodelphax striatellus</i></scp> . Environmental Microbiology, 2020, 22, 2653-2663.	1.8	16
564	Predicting species and community responses to global change using structured expert judgement: An Australian mountain ecosystems case study. Global Change Biology, 2021, 27, 4420-4434.	4.2	16
565	Ecologically Sustainable Chemical Recommendations for Agricultural Pest Control?. Journal of Economic Entomology, 2007, 100, 1741-1750.	0.8	16
566	Genetic structure of the whitefly <i>Bemisia tabaci</i> populations in Colombia following a recent invasion. Insect Science, 2015, 22, 483-494.	1.5	15
567	Spatial and Temporal Variation in <i>Aedes aegypti</i> Aedes albopictus(Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for <i>Wolbachia</i> Releases. Journal of Medical Entomology, 2016, 53, 188-198.	0.9	15
568	Effects of Alternative Blood Sources on Wolbachia Infected Aedes aegypti Females within and across Generations. Insects, 2018, 9, 140.	1.0	15
569	Interactions Between Facultative Symbionts Hamiltonella and Cardinium in Bemisia tabaci (Hemiptera:) Tj ETQq1	1 0.78431 0.8	4 rgBT /Over
570	Variable resistance to spinetoram in populations of <i>Thrips palmi</i> across a small area unconnected to genetic similarity. Evolutionary Applications, 2020, 13, 2234-2245.	1.5	15
571	Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. Diversity and Distributions, 2020, 26, 610-622.	1.9	15
572	Hymenopteran Parasitoids of Aphid Pests within Australian Grain Production Landscapes. Insects, 2021, 12, 44.	1.0	15
573	Learnings from over a decade of increasing pesticide resistance in the redlegged earth mite, <i>Halotydeus destructor</i> (Tucker). Pest Management Science, 2021, 77, 3013-3024.	1.7	15
574	Phylogenomic analyses of the genus <i>Drosophila</i> reveals genomic signals of climate adaptation. Molecular Ecology Resources, 2022, 22, 1559-1581.	2.2	15
575	Reply from L.G. Harshman and A.A. Hoffmann. Trends in Ecology and Evolution, 2000, 15, 207.	4.2	14
576	Incompatible mosquitoes. Nature, 2005, 436, 189-189.	13.7	14

#	Article	IF	Citations
577	THE CONTRASTING GENETIC ARCHITECTURE OF WING SIZE, VIABILITY, AND DEVELOPMENT TIME IN A RAINFOREST SPECIES AND ITS MORE WIDELY DISTRIBUTED RELATIVE. Evolution; International Journal of Organic Evolution, 2006, 60, 106-114.	1.1	14
578	Assaying the potential benefits of thiamethoxam and imidacloprid for phylloxera suppression and improvements to grapevine vigour. Crop Protection, 2008, 27, 1229-1236.	1.0	14
579	Effectiveness of spring spraying targeting diapause egg production for controlling redlegged earth mites and other pests in pasture. Australian Journal of Experimental Agriculture, 2008, 48, 1118.	1.0	14
580	Genetic variation among <i>Helicoverpa armigera</i> populations as assessed by microsatellites: a cautionary tale about accurate allele scoring. Bulletin of Entomological Research, 2010, 100, 445-450.	0.5	14
581	Clone lineages of grape phylloxera differ in their performance on Vitis vinifera. Bulletin of Entomological Research, 2010, 100, 671-678.	0.5	14
582	Facilitating <i>Wolbachia</i> invasions. Austral Entomology, 2014, 53, 125-132.	0.8	14
583	Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges. Annals of Botany, 2014, 113, 953-965.	1.4	14
584	Evidence for adaptive divergence of thermal responses among <i><scp>B</scp>emisia tabaci</i> populations from tropical <scp>C</scp> olombia following a recent invasion. Journal of Evolutionary Biology, 2014, 27, 1160-1171.	0.8	14
585	A review of Galaxiella pusilla (Mack) (Teleostei: Galaxiidae) in south-eastern Australia with a description of a new species A. Zootaxa, 2015, 4021, 243-81.	0.2	14
586	Novel applications of thermocyclers for phenotyping invertebrate thermal responses. Methods in Ecology and Evolution, 2016, 7, 1201-1208.	2.2	14
587	Patterns of genetic variation among geographic and host-plant associated populations of the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae). BMC Evolutionary Biology, 2017, 17, 265.	3.2	14
588	Life History Effects Linked to an Advantage for wAu Wolbachia in Drosophila. Insects, 2019, 10, 126.	1.0	14
589	Supporting the adaptive capacity of species through more effective knowledge exchange with conservation practitioners. Evolutionary Applications, 2021, 14, 1969-1979.	1.5	14
590	Spider Mites Singly Infected With Either Wolbachia or Spiroplasma Have Reduced Thermal Tolerance. Frontiers in Microbiology, 2021, 12, 706321.	1.5	14
591	Estimating dispersal using close kin dyads: The <scp>kindisperse</scp> R package. Molecular Ecology Resources, 2022, 22, 1200-1212.	2.2	14
592	Trait Associations across Evolutionary Time within a Drosophila Phylogeny: Correlated Selection or Genetic Constraint?. PLoS ONE, 2013, 8, e72072.	1.1	14
593	Into the wildâ€"a field study on the evolutionary and ecological importance of thermal plasticity in ectotherms across temperate and tropical regions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210004.	1.8	14
594	Understanding the biology of species' ranges: when and how does evolution change the rules of ecological engagement?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210027.	1.8	14

#	Article	IF	CITATIONS
595	Habitat marking: males attracted to residual odors of twoDrosophila species. Experientia, 1984, 40, 763-765.	1.2	13
596	RAPID LOSS OF STRESS RESISTANCE IN DROSOPHILA MELANOGASTER UNDER ADAPTATION TO LABORATORY CULTURE. Evolution; International Journal of Organic Evolution, 2001, 55, 436.	1.1	13
597	Toxicity of Chemicals Commonly used in Indonesian Vegetable Crops to ⁢i>Liriomyza huidobrensis Populations and the Indonesian Parasitoids <l>Hemiptarsenus varicornis</l> , <l>Opius</l> sp., and <l>Gronotoma micromorpha</l> , as well as the Australian parasitoids <l>Hemiptarsenus varicornis</l> and <l>Diglyphus</l>	0.8	13
598	Selective control of mite and collembolan pests of pastures and grain crops in Australia. Crop Protection, 2010, 29, 190-196.	1.0	13
599	<i>Trichogramma</i> parasitoids for control of <scp>L</scp> epidopteran borers in <scp>T</scp> aiwan: species, lifeâ€history traits and <i><scp>W</scp>olbachia</i> infections. Journal of Applied Entomology, 2016, 140, 353-363.	0.8	13
600	Comparing the impacts of sediment-bound bifenthrin on aquatic macroinvertebrates in laboratory bioassays and field microcosms. Ecotoxicology and Environmental Safety, 2016, 133, 489-500.	2.9	13
601	Field margins provide a refuge for pest genes beneficial to resistance management. Journal of Pest Science, 2019, 92, 1017-1026.	1.9	13
602	Population genomic data in spider mites point to a role for local adaptation in shaping range shifts. Evolutionary Applications, 2020, 13, 2821-2835.	1.5	13
603	Empowering Australian insecticide resistance research with genetic information: the road ahead. Austral Entomology, 2021, 60, 147-162.	0.8	13
604	Toxicity of Insecticides and Miticides to Natural Enemies in Australian Grains: A Review. Insects, 2021, 12, 187.	1.0	13
605	Comparative mitogenomics and phylogenetics of the stinging wasps (Hymenoptera: Aculeata). Molecular Phylogenetics and Evolution, 2021, 159, 107119.	1.2	13
606	Evidence for an Association between Nonadditive Genetic Variation and Extreme Expression of a Trait. American Naturalist, 1996, 148, 576-587.	1.0	13
607	Effects of starvation and experience on the response of Drosophila to alternative resources. Oecologia, 1988, 77, 497-505.	0.9	12
608	Heritable Variation for Fecundity in Field-Collected Drosophila melanogaster and Their Offspring Reared Under Different Environmental Temperatures. Evolution; International Journal of Organic Evolution, 1998, 52, 134.	1.1	12
609	Composite Asymmetry as an Indicator of Quality in the Beneficial Wasp <i>Trichogramma</i> nr. <i>brassicae</i> (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology, 2001, 94, 826-830.	0.8	12
610	Patterns of Genetic Variation and Host Adaptation in an Invasive Population of <i>Rhopalosiphum padi</i> (Hemiptera: Aphididae). Annals of the Entomological Society of America, 2010, 103, 886-897.	1.3	12
611	Soft scale insects (<scp>H</scp> emiptera: <scp>C</scp> occoidea: <scp>C</scp> occidae) on grapevines in <scp>A</scp> ustralia. Australian Journal of Entomology, 2013, 52, 371-378.	1.1	12
612	A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture. Insects, 2015, 6, 988-1012.	1.0	12

#	Article	IF	CITATIONS
613	A Meta-Analysis Evaluating the Relationship between Aquatic Contaminants and Chironomid Larval Deformities in Laboratory Studies. Environmental Science & Environmental Science & 2016, 50, 12903-12911.	4.6	12
614	Extensive variation, but not local adaptation in an Australian alpine daisy. Ecology and Evolution, 2016, 6, 5459-5472.	0.8	12
615	Summer egg diapause in a matchstick grasshopper synchronizes the life cycle and buffers thermal extremes. Integrative Zoology, 2018, 13, 437-449.	1.3	12
616	A Reâ€Evaluation of Chironomid Deformities as an Environmental Stress Response: Avoiding Survivorship Bias and Testing Noncontaminant Biological Factors. Environmental Toxicology and Chemistry, 2019, 38, 1658-1667.	2.2	12
617	Reply to: Issues with combining incompatible and sterile insectÂtechniques. Nature, 2021, 590, E3-E5.	13.7	12
618	Local climate adaptation and gene flow in the native range of two coâ€occurring fruit moths with contrasting invasiveness. Molecular Ecology, 2021, 30, 4204-4219.	2.0	12
619	Environmental stress and the expression of genetic variation. Exs, 1997, 83, 79-96.	1.4	12
620	A Comparison of Inbreeding Depression in Tropical and Widespread Drosophila Species. PLoS ONE, 2013, 8, e51176.	1.1	12
621	Does interspecific hybridization influence evolutionary rates? An experimental study of laboratory adaptation in hybrids between Drosophila serrata and Drosophila birchii. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2195-2200.	1.2	11
622	Nucleotide diversity in the <i>Hsp90</i> gene in natural populations of <i>Drosophila melanogaster </i> from Australia. Insect Molecular Biology, 2008, 17, 685-697.	1.0	11
623	The tolerance of the lucerne flea, <i>Sminthurus viridis</i> (Collembola: Sminthuridae), to currently registered pesticides in Australia. Australian Journal of Entomology, 2009, 48, 241-246.	1.1	11
624	The capacity of Drosophila to heat harden associates with low rates of heat-shocked protein synthesis. Journal of Thermal Biology, 2009, 34, 327-331.	1.1	11
625	Population Dynamics and Diapause Response of the Springtail Pest Sminthurus viridis (Collembola:) Tj ETQq1 1 0	.784314 r 0.8	gBT /Overloc
626	Genetic structure and diversity of introduced eastern mosquitofish (Gambusia holbrooki) in south-eastern Australia. Marine and Freshwater Research, 2012, 63, 1206.	0.7	11
627	A proline repeat polymorphism of the <i>Frost</i> gene of <i>Drosophila melanogaster</i> showing clinal variation but not associated with cold resistance. Insect Molecular Biology, 2012, 21, 437-445.	1.0	11
628	Phylogeny of the holly grevilleas (Proteaceae) based on nuclear ribosomal and chloroplast DNA. Australian Systematic Botany, 2014, 27, 56.	0.3	11
629	Detecting invertebrate species in archived collections using nextâ€generation sequencing. Molecular Ecology Resources, 2017, 17, 915-930.	2.2	11
630	Crop Seedling Susceptibility to Armadillidium vulgare (Isopoda: Armadillidiidae) and Ommatoiulus moreletii (Diplopoda: Iulidae). Journal of Economic Entomology, 2017, 110, 2679-2685.	0.8	11

#	Article	IF	Citations
631	Orthonome $\hat{a} \in ``a new pipeline for predicting high quality orthologue gene sets applicable to complete and draft genomes. BMC Genomics, 2017, 18, 673.$	1.2	11
632	Lifeâ€history traits and physiological limits of the alpine fly <i>Drosophila nigrosparsa</i> (Diptera:) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf 5
633	Stable Establishment of Cardinium spp. in the Brown Planthopper Nilaparvata lugens despite Decreased Host Fitness. Applied and Environmental Microbiology, 2020, 86, .	1.4	11
634	Improving mosquito control strategies with population genomics. Trends in Parasitology, 2021, 37, 907-921.	1.5	11
635	Measuring the Host-Seeking Ability of Aedes aegypti Destined for Field Release. American Journal of Tropical Medicine and Hygiene, 2020, 102, 223-231.	0.6	11
636	A <i>w</i> Mel <i>Wolbachia</i> variant in <i>Aedes aegypti</i> from fieldâ€collected <i>Drosophila melanogaster</i> with increased phenotypic stability under heat stress. Environmental Microbiology, 2022, 24, 2119-2135.	1.8	11
637	Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia. BMC Genomics, 2021, 22, 894.	1.2	11
638	Heritable variation in the attraction of Drosophila melanogaster to fruit in the field. Biological Journal of the Linnean Society, 1992, 47, 147-159.	0.7	10
639	Laboratory Adaptation and Inbreeding in Helicoverpa-Punctigera (Lepidoptera, Noctuidae). Australian Journal of Zoology, 1995, 43, 83.	0.6	10
640	An independent non-linear latitudinal cline for the sn-glycerol-3-phosphate (\hat{l}_{\pm} -Gpdh) polymorphism of Drosophila melanogaster from eastern Australia. Genetical Research, 2006, 87, 13-21.	0.3	10
641	High molecular weight petroleum hydrocarbons differentially affect freshwater benthic macroinvertebrate assemblages. Environmental Toxicology and Chemistry, 2008, 27, 1077-1083.	2.2	10
642	Notonomus gravis (Chaudoir) (Coleoptera: Carabidae) predation of Deroceras reticulatum Mýller (Gastropoda: Agriolimacidae), an example of fortuitous biological control. Biological Control, 2008, 47, 328-334.	1.4	10
643	Morphological variation and floral abnormalities in a trigger plant across a narrow altitudinal gradient. Austral Ecology, 2009, 34, 780-792.	0.7	10
644	Variation in Morphological Characters of Two Invasive Leafminers, <i>Liriomyza huidobrensis</i> and <i>L. sativae,</i> across a Tropical Elevation Gradient. Journal of Insect Science, 2011, 11, 1-16.	0.6	10
645	Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables?. Australian Journal of Zoology, 2011, 59, 201.	0.6	10
646	MRI Blood–Brain Barrier Permeability Measurements to Predict Hemorrhagic Transformation in a Rat Model of Ischemic Stroke. Translational Stroke Research, 2012, 3, 508-516.	2.3	10
647	Inconsistent responses of alpine arthropod communities to experimental warming and thermal gradients. Climate Research, 2013, 55, 227-237.	0.4	10
648	Climate change expected to drive habitat loss for two key herbivore species in an alpine environment. Journal of Biogeography, 2015, 42, 1210-1221.	1.4	10

#	Article	IF	CITATIONS
649	Soil moisture conditions determine phenology and success of larval escape in the peach fruit moth, Carposina sasakii (Lepidoptera, Carposinidae): Implications for predicting drought effects on a diapausing insect. Applied Soil Ecology, 2017, 110, 65-72.	2.1	10
650	Different genetic structures revealed resident populations of a specialist parasitoid wasp in contrast to its migratory host. Ecology and Evolution, 2017, 7, 5400-5409.	0.8	10
651	Toxicant mixtures in sediment alter gene expression in the cysteine metabolism of Chironomus tepperi. Environmental Toxicology and Chemistry, 2017, 36, 691-698.	2.2	10
652	Influence of Wolbachia infection on mitochondrial DNA variation in the genus Polytremis (Lepidoptera: Hesperiidae). Molecular Phylogenetics and Evolution, 2018, 129, 158-170.	1.2	10
653	Identifying critical research gaps that limit control options for invertebrate pests in <scp>Australian</scp> grain production systems. Austral Entomology, 2019, 58, 9-26.	0.8	10
654	A LAMP assay for the rapid and robust assessment of Wolbachia infection in Aedes aegypti under field and laboratory conditions. PLoS ONE, 2019, 14, e0225321.	1.1	10
655	Contrasting Patterns of Virus Protection and Functional Incompatibility Genes in Two Conspecific <i>>Wolbachia</i> > Strains from <i>Drosophila pandora</i> > Applied and Environmental Microbiology, 2019, 85, .	1.4	10
656	Characterization of Sodium Channel Mutations in the Dengue Vector Mosquitoes Aedes aegypti and Aedes albopictus within the Context of Ongoing Wolbachia Releases in Kuala Lumpur, Malaysia. Insects, 2020, 11, 529.	1.0	10
657	Molecular Identification of Leafmining Flies From Australia Including New Liriomyza Outbreaks. Journal of Economic Entomology, 2021, 114, 1983-1990.	0.8	10
658	Endosymbionts Reduce Microbiome Diversity and Modify Host Metabolism and Fecundity in the Planthopper <i>Sogatella furcifera</i> . MSystems, 2022, 7, e0151621.	1.7	10
659	Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness. PLoS Genetics, 2022, 18, e1010206.	1.5	10
660	Parthenogenesis without costs in a grasshopper with hybrid origins. Science, 2022, 376, 1110-1114.	6.0	10
661	Male Effects on Fecundity in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1985, 39, 638.	1.1	9
662	Individual level trade-offs and artifacts in the egg parasitoid <i>Trichogramma carverae</i> (Hymenoptera: Trichogrammatidae). Annals of the Entomological Society of America, 2002, 95, 695-700.	1.3	9
663	GEOGRAPHIC VARIATION FOR WING SHAPE IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2002, 56, 1068.	1.1	9
664	Developmental Stability as a Potential Tool in the Early Detection of Salinity Stress in Wheat. International Journal of Plant Sciences, 2003, 164, 325-331.	0.6	9
665	Revisiting Heritable Variation and Limits to Species Distribution: Recent Developments. Israel Journal of Ecology and Evolution, 2006, 52, 247-261.	0.2	9
666	The distribution, abundance and life cycle of the pest mites <i>Balaustium medicagoense</i> (Prostigmata: Erythraeidae) and <i>Bryobia</i> spp. (Prostigmata: Tetranychidae) in Australia. Australian Journal of Entomology, 2011, 50, 22-36.	1.1	9

#	Article	lF	Citations
667	Genetic mapping of adaptive wing size variation in Drosophila simulans. Heredity, 2011, 107, 22-29.	1.2	9
668	Taking advantage of adaptations when managing threatened species within variable environments: the case of the dwarf galaxias, Galaxiella pusilla (Teleostei, Galaxiidae). Marine and Freshwater Research, 2017, 68, 175.	0.7	9
669	Behavioral thermoregulation in a small herbivore avoids direct UVB damage. Journal of Insect Physiology, 2018, 107, 276-283.	0.9	9
670	Small females prefer small males: size assortative mating in Aedes aegypti mosquitoes. Parasites and Vectors, 2018, 11, 445.	1.0	9
671	Bees of the Victorian Alps: Network structure and interactions of introduced species. Austral Ecology, 2019, 44, 245-254.	0.7	9
672	Commercial Agrochemical Applications in Vineyards Do Not Influence Ant Communities. Environmental Entomology, 2007, 36, 1374-1383.	0.7	9
673	Increasing Frequency of G275E Mutation in the Nicotinic Acetylcholine Receptor α6 Subunit Conferring Spinetoram Resistance in Invading Populations of Western Flower Thrips in China. Insects, 2022, 13, 331.	1.0	9
674	A Test of the Role of Epistasis in Divergence Under Uniform Selection. Evolution; International Journal of Organic Evolution, 1989, 43, 766.	1.1	8
675	RESPONSE TO NATURAL AND LABORATORY SELECTION AT THE DROSOPHILA HSP70 GENES. Evolution; International Journal of Organic Evolution, 2002, 56, 1796.	1.1	8
676	Isolation of a Drosophila melanogaster desiccation resistant mutant. Journal of Insect Physiology, 2003, 49, 1013-1020.	0.9	8
677	Clinal variation in postâ€winter male fertility retention; an adaptive overwintering strategy in ⟨i>Drosophila melanogaster⟨ i>. Journal of Evolutionary Biology, 2009, 22, 2438-2444.	0.8	8
678	Survival and reproduction of the pest mites Balaustium medicagoense and Bryobia spp. on winter grain crops. Experimental and Applied Acarology, 2010, 52, 141-153.	0.7	8
679	A replicated comparison of breedingâ€container suitability for the dengue vector <i>Aedes aegypti</i> in tropical and temperate Australia. Austral Ecology, 2013, 38, 219-229.	0.7	8
680	Potential new sources of wheat curl mite resistance in wheat to prevent the spread of yield-reducing pathogens. Experimental and Applied Acarology, 2014, 64, 1-19.	0.7	8
681	The Parthenogenetic Cosmopolitan Chironomid, Paratanytarsus grimmii, as a New Standard Test Species for Ecotoxicology: Culturing Methodology and Sensitivity to Aqueous Pollutants. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 350-356.	1.3	8
682	Separating multiple sources of variation on heat resistance in Drosophila hydei. Journal of Insect Physiology, 2017, 96, 122-127.	0.9	8
683	Influence of previous host plants on the reproductive success of a polyphagous mite pest, Halotydeus destructor (Trombidiformes: Penthaleidae). Journal of Economic Entomology, 2018, 111, 680-688.	0.8	8
684	Spatial patterns of genetic diversity among Australian alpine flora communities revealed by comparative phylogenomics. Journal of Biogeography, 2018, 45, 177-189.	1.4	8

#	Article	IF	CITATIONS
685	Enhancing Ebony? Common Associations With a cis-Regulatory Haplotype for Drosophila melanogaster Thoracic Pigmentation in a Japanese Population and Australian Populations. Frontiers in Physiology, 2018, 9, 822.	1.3	8
686	Similar Gut Bacterial Microbiota in Two Fruit-Feeding Moth Pests Collected from Different Host Species and Locations. Insects, 2020, 11, 840.	1.0	8
687	Long-Range But Not Short-Range Attraction of Male <i>Aedes aegypti</i> (Diptera: Culicidae) Mosquitoes to Humans. Journal of Medical Entomology, 2022, 59, 83-88.	0.9	8
688	Lifecycle of the invasive omnivore, Forficula auricularia , in Australian grain growing environments. Pest Management Science, 2021, 77, 1818-1828.	1.7	8
689	Mitochondrial DNA suggests a single maternal origin for the widespread triploid parthenogenetic pest species, <i>Paratanytarsus grimmii, </i> but microsatellite variation shows local endemism. Insect Science, 2013, 20, 345-357.	1.5	7
690	Natural enemies of soft scale insects (Hemiptera: Coccoidea: Coccidae) in Australian vineyards. Australian Journal of Grape and Wine Research, 2015, 21, 302-310.	1.0	7
691	Challenges in devising economic spray thresholds for a major pest of Australian canola, the redlegged earth mite (<i>Halotydeus destructor</i>). Pest Management Science, 2015, 71, 1462-1470.	1.7	7
692	Morphological and Molecular Analysis of Australian Earwigs (Dermaptera) Points to Unique Species and Regional Endemism in the Anisolabididae Family. Insects, 2019, 10, 72.	1.0	7
693	Molecular Phylogeny and Historical Biogeography of the Butterfly Tribe Aeromachini Tutt (Lepidoptera: Hesperiidae) from China. Cells, 2019, 8, 294.	1.8	7
694	Development of novel microsatellites for population genetic analysis of Phenacoccus solenopsis Tinsley (Hemipeta: Pseudoccoccidae) based on genomic analysis. International Journal of Biological Macromolecules, 2019, 121, 1135-1144.	3.6	7
695	Phylogeny and Density Dynamics of Wolbachia Infection of the Health Pest Paederus fuscipes Curtis (Coleoptera: Staphylinidae). Insects, 2020, 11, 625.	1.0	7
696	Frequency of kdr mutations in the voltage-sensitive sodium channel (VSSC) gene in Aedes aegypti from Yogyakarta and implications for Wolbachia-infected mosquito trials. Parasites and Vectors, 2020, 13, 429.	1.0	7
697	Maternal effects in gene expression of interspecific coral hybrids. Molecular Ecology, 2021, 30, 517-527.	2.0	7
698	High Incidence of Related Wolbachia across Unrelated Leaf-Mining Diptera. Insects, 2021, 12, 788.	1.0	7
699	Inter- and intraspecific variation in the response of Drosophila melanogaster and D. simulans to larval cues. Behavior Genetics, 1986, 16, 295-306.	1.4	6
700	Olfactory responses of Drosophila melanogaster selected for knockdown resistance to ethanol. Behavior Genetics, 1987, 17, 307-312.	1.4	6
701	Heritable Variation in Resource Utilization and Response in a Winery Population of Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1991, 45, 1000.	1,1	6
702	Combining rapid bioassessment and fieldâ€based microcosms for identifying impacts in an urban river. Environmental Toxicology and Chemistry, 2010, 29, 1773-1780.	2.2	6

#	Article	IF	CITATIONS
703	High diversity of ants in Australian vineyards. Australian Journal of Entomology, 2011, 50, 7-21.	1.1	6
704	Genetic Structure of Carex Species from the Australian Alpine Region along Elevation Gradients: Patterns of Reproduction and Gene Flow. International Journal of Plant Sciences, 2013, 174, 189-199.	0.6	6
705	Estimating Densities of the Pest <l>Halotydeus destructor</l> (Acari: Penthaleidae) in Canola. Journal of Economic Entomology, 2014, 107, 2204-2212.	0.8	6
706	Variability in development of the striped rice borer, Chilo suppressalis (Lepidoptera: Pyralidae), due to instar number and last instar duration. Scientific Reports, 2016, 6, 35231.	1.6	6
707	Wolbachia. Current Biology, 2020, 30, R1113-R1114.	1.8	6
708	Combined Analyses of Phenotype, Genotype and Climate Implicate Local Adaptation as a Driver of Diversity in Eucalyptus microcarpa (Grey Box). Forests, 2020, 11, 495.	0.9	6
709	Patterns of environmental variance across environments and traits in domestic cattle. Evolutionary Applications, 2020, 13, 1090-1102.	1.5	6
710	Association Between Susceptibility of Thrips palmi to Spinetoram and Frequency of G275E Mutation Provides Basis for Molecular Quantification of Field-Evolved Resistance. Journal of Economic Entomology, 2021, 114, 339-347.	0.8	6
711	Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid?. Journal of Thermal Biology, 2021, 98, 102936.	1.1	6
712	Voltage-sensitive sodium channel (Vssc) mutations associated with pyrethroid insecticide resistance in Aedes aegypti (L.) from two districts of Jeddah, Kingdom of Saudi Arabia: baseline information for a Wolbachia release program. Parasites and Vectors, 2021, 14, 361.	1.0	6
713	The contrasting genetic architecture of wing size, viability, and development time in a rainforest species and its more widely distributed relative. Evolution; International Journal of Organic Evolution, 2006, 60, 106-14.	1.1	6
714	Population genomic signatures of the oriental fruit moth related to the Pleistocene climates. Communications Biology, 2022, 5, 142.	2.0	6
715	Sex-specific distribution and classification of Wolbachia infections and mitochondrial DNA haplogroups in Aedes albopictus from the Indo-Pacific. PLoS Neglected Tropical Diseases, 2022, 16, e0010139.	1.3	6
716	Distribution and spacing of Drosophila mycetophaga flies on bracket fungi used as mating arenas. Ecological Entomology, 1995, 20, 203-207.	1,1	5
717	Correlations between measures of heat resistance and acclimation in two species of Drosophila their hybrids. Biological Journal of the Linnean Society, 1998, 64, 449-462.	0.7	5
718	Robust clines and robust sampling: a reply to Kyriacou et al Journal of Evolutionary Biology, 2007, 20, 1652-1654.	0.8	5
719	Impact of <i>Halotydeus destructor </i> on Crop Seedlings at Different Plant Developmental Stages and Levels of Moisture Stress. Environmental Entomology, 2013, 42, 998-1012.	0.7	5
720	Coccinellid abundance in shelterbelts is affected more by adjacent crop type and aphid abundance than vegetation characteristics. Biological Control, 2015, 87, 47-55.	1.4	5

#	Article	IF	CITATIONS
721	Developing Exonâ€Primed Intronâ€Crossing (EPIC) markers for population genetic studies in three <i>Aedes</i> disease vectors. Insect Science, 2015, 22, 409-423.	1.5	5
722	A short work-flow to effectively source faecal pollution in recreational waters $\hat{a} \in \text{``A}$ case study. Science of the Total Environment, 2018, 644, 1503-1510.	3.9	5
723	Functional Analysis of a Putative Target of Spatially Varying Selection in the <i>Menin1 </i> Gene of <i>Drosophila melanogaster </i> G3: Genes, Genomes, Genetics, 2019, 9, 73-80.	0.8	5
724	Microhabitat separation between the pest aphids Rhopalosiphum padi and Sitobion avenae: food resource or microclimate selection?. Journal of Pest Science, 2021, 94, 795-804.	1.9	5
725	Low levels of genetic differentiation with isolation by geography and environment in populations of Drosophila melanogaster from across China. Heredity, 2021, 126, 942-954.	1.2	5
726	Vector control: Discovery of Wolbachia in malaria vectors. Current Biology, 2021, 31, R738-R740.	1.8	5
727	Variation in sex ratio of the leafminer <i>Phytomyza plantaginis</i> Goureau (Diptera: Agromyzidae) from Australia. Austral Entomology, 2021, 60, 610-620.	0.8	5
728	The mitogenome of <i>Halotydeus destructor</i> (Tucker) and its relationships with other trombidiform mites as inferred from nucleotide sequences and gene arrangements. Ecology and Evolution, 2021, 11, 14162-14174.	0.8	5
729	Large―and smallâ€scale geographic structures affecting genetic patterns across populations of an Alpine butterfly. Ecology and Evolution, 2021, 11, 14697-14714.	0.8	5
730	Heritable Variation in Resource Use in Drosophila in the Field. , 1990, , 177-193.		5
731	Changes in Grape Phylloxera Abundance in Ungrafted Vineyards. Journal of Economic Entomology, 2006, 99, 1774-1783.	0.8	5
732	Warmer temperatures reduce chemical tolerance in the redlegged earth mite (<i>Halotydeus) Tj ETQq0 0 0 rgBT</i>	/Overlock	10 Tf 50 302
733	A Comment on Inâ€Group/Outâ€Group Comparisons for Fluctuating Asymmetry Based on Trait Values from the Left or Right Sides of an Individual. American Naturalist, 1999, 153, 140-142.	1.0	4
734	Biology, ecology and control of the Penthaleus species complex (Acari: Penthaleidae). Experimental and Applied Acarology, 2004, 34, 211-237.	0.7	4
735	THE GENETIC ARCHITECTURE OF WING SIZE DIVERGENCE AT VARYING SPATIAL SCALES ALONG A BODY SIZE CLINE INDROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2010, 64, 1935-43.	1.1	4
736	III.8. Evolutionary Limits and Constraints. , 2013, , 247-252.		4
737	Taiwanese <i>Trichogramma</i> of Asian Corn Borer: Morphology, ITS-2 rDNA Characterization, and Natural <i>Wolbachia</i> li>Infection. Journal of Insect Science, 2016, 16, 22.	0.6	4
738	Distribution and influence of grazing on wheat curl mites (<i><scp>A</scp>ceria tosichella) Tj ETQq0 0 0 rgBT /C</i>	Overlock 1	0 т _ф 50 62 тd

#	Article	IF	CITATIONS
739	Does increased heat resistance result in higher susceptibility to predation? A test using <i>Drosophila melanogaster</i> selection and hardening. Journal of Evolutionary Biology, 2017, 30, 1153-1164.	0.8	4
740	Metabolomic Profiles of a Midge (Procladius villosimanus, Kieffer) Are Associated with Sediment Contamination in Urban Wetlands. Metabolites, 2017, 7, 64.	1.3	4
741	Factors Influencing Damage by the Portuguese Millipede, Ommatoiulus moreleti (Julida: Julidae), to Crop Seedlings. Journal of Economic Entomology, 2019, 112, 2695-2702.	0.8	4
742	The effects of individual nonheritable variation on fitness estimation and coexistence. Ecology and Evolution, 2019, 9, 8995-9004.	0.8	4
743	Fitness Costs Associated with Pyrethroid Resistance in <i>Halotydeus destructor</i> (Tucker) (Acari:) Tj ETQq1 1 1270-1281.	0.784314 0.8	rgBT /Overl 4
744	Comparative genome and transcriptome analyses reveal innate differences in response to host plants by two color forms of the two-spotted spider mite Tetranychus urticae. BMC Genomics, 2021, 22, 569.	1.2	4
745	Using unsorted sweep-net samples to rapidly assess macroinvertebrate biodiversity. Freshwater Science, 2021, 40, 551-565.	0.9	4
746	A diagnostic primer pair to distinguish between wMel and wAlbB Wolbachia infections. PLoS ONE, 2021, 16, e0257781.	1.1	4
747	Genomic knockout of hsp23 both decreases and increases fitness under opposing thermal extremes in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2021, 139, 103652.	1.2	4
748	The detection and significance of emerging insecticide resistance in mosquitoes. Microbiology Australia, 2018, 39, 80.	0.1	4
749	Limonene Emissions: Do Different Types Have Different Biological Effects?. International Journal of Environmental Research and Public Health, 2021, 18, 10505.	1.2	4
750	RNA virome diversity and Wolbachia infection in individual Drosophila simulans flies. Journal of General Virology, 2021, 102, .	1.3	4
751	DNA barcoding and metabarcoding of highly diverse aquatic mites (Acarina) can improve their use in routine biological monitoring. Marine and Freshwater Research, 2022, 73, 900-914.	0.7	4
752	Habitat marking: Parallel genetic divergence in two Drosophila species. Heredity, 1985, 54, 203-207.	1.2	3
753	Sensitivity of pupae of lightbrown apple moth, Epiphyas postvittana (Walker) (Lepidoptera:) Tj ETQq1 1 0.78431	4 rgBT /Ov	verjock 10 Tf
754	Absence of clinal variation in virgin retention capacity in Australian Drosophila melanogaster. Evolutionary Ecology, 2006, 20, 407-413.	0.5	3
755	Localâ€scale spatial dynamics of ants in a temperate agroecosystem. Austral Ecology, 2011, 36, 413-424.	0.7	3
756	Inbreeding depression as a compromising factor in ecotoxicological assays. Integrated Environmental Assessment and Management, 2016, 12, 595-597.	1.6	3

#	Article	IF	Citations
757	Digenean trematode cysts within the heads of threatened Galaxiella species (Teleostei : Galaxiidae) from south-eastern Australia. Australian Journal of Zoology, 2016, 64, 285.	0.6	3
758	Efficacy of carbon dioxide treatments for the control of the two-spotted spider mite, Tetranychus urticae, and treatment impact on plant seedlings. Experimental and Applied Acarology, 2018, 75, 143-153.	0.7	3
759	Changes in lipid classes of Drosophila melanogaster in response to selection for three stress traits. Journal of Insect Physiology, 2019, 117, 103890.	0.9	3
760	Horizontal transmission and recombination of Wolbachia in the butterfly tribe Aeromachini Tutt, 1906 (Lepidoptera: Hesperiidae). G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
761	Establishing a climateâ€ready revegetation trial in central Victoria – A case study. Ecological Management and Restoration, 2021, 22, 256-265.	0.7	3
762	Study of aphid parasitoids (Hymenoptera: Braconidae) in Australian grain production landscapes. Austral Entomology, 2021, 60, 722-737.	0.8	3
763	Forecasting impacts of biological control under future climates: mechanistic modelling of an aphid pest and a parasitic wasp. Ecological Modelling, 2021, 457, 109679.	1.2	3
764	Making monitoring work: insights and lessons from Australia's Long Term Ecological Research Network. Australian Zoologist, 2018, 39, 755-768.	0.6	3
765	Toxicity and Control Efficacy of an Organosilicone to the Two-Spotted Spider Mite Tetranychus urticae and Its Crop Hosts. Insects, 2022, 13, 341.	1.0	3
766	Whole genome resequencing reveals signatures of rapid selection in a virusâ€affected commercial fishery. Molecular Ecology, 2022, 31, 3658-3671.	2.0	3
767	Is what you see what you get? The relationship between field observed and laboratory observed aphid parasitism rates in canola fields. Pest Management Science, 2022, 78, 3596-3607.	1.7	3
768	Residual influences on fecundity in drosophilid species. Experientia, 1987, 43, 213-215.	1.2	2
769	Mutation and Phenotypic Variation. , 2005, , 159-189.		2
770	Drosophila and Selection in Nature: From Laboratory Fitness Components to Field Assessments. , 2009, , 169-182.		2
771	MEASURING THE PLASTICITY OF DEVELOPMENTAL RATE ACROSS INSECT POPULATIONS: COMMENT ON ROCHA AND KLACZKO (2012). Evolution; International Journal of Organic Evolution, 2014, 68, 1544-1547.	1.1	2
772	Effects of chlorantraniliprole and chromafenozide on mortality and feeding cessation of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). Journal of Asia-Pacific Entomology, 2020, 23, 1067-1072.	0.4	2
773	Flexible habitat choice by aphids exposed to multiple cues reflecting present and future benefits. Behavioral Ecology, 2021, 32, 286-296.	1.0	2
774	Strip spraying delays pyrethroid resistance in the redlegged earth mite, <i>Halotydeus destructor</i> : a novel refuge strategy. Pest Management Science, 2021, 77, 4572-4582.	1.7	2

#	Article	IF	CITATIONS
775	Reducing mosquito-borne disease transmission to humans: A systematic review of cluster randomised controlled studies that assess interventions other than non-targeted insecticide. PLoS Neglected Tropical Diseases, 2021, 15, e0009601.	1.3	2
776	Two Newly Introduced <i>Wolbachia</i> Endosymbionts Induce Cell Host Differences in Competitiveness and Metabolic Responses. Applied and Environmental Microbiology, 2021, 87, e0147921.	1.4	2
777	Biological Invasions, Climate Change, and Genomics. , 2016, , 37-70.		2
778	The Effect of Nonrandom Mating on Wolbachia Dynamics: Implications for Population Replacement and Sterile Releases in Aedes Mosquitoes. American Journal of Tropical Medicine and Hygiene, 2018, 99, 608-617.	0.6	2
779	Climate warming threatens critically endangered wingless stonefly Riekoperla darlingtoni (Illies,) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 0.8	/Qverlock 1
780	Identification of two leafminer parasitoids (Hymenoptera: Eulophidae), <i>Neochrysocharis formosa</i> and <i>Proacrias</i> sp. from Australia, with both showing thelytoky and infection by <i>Rickettsia</i> . Austral Entomology, 0, , .	0.8	2
781	GEOGRAPHIC PATTERNS OF CLONAL DIVERSITY IN THE EARTH MITE SPECIES PENTHALEUS MAJOR WITH PARTICULAR EMPHASIS ON SPECIES MARGINS. Evolution; International Journal of Organic Evolution, 2002, 56, 1160.	1.1	1
782	THE CONTRASTING GENETIC ARCHITECTURE OF WING SIZE, VIABILITY, AND DEVELOPMENT TIME IN A RAINFOREST SPECIES AND ITS MORE WIDELY DISTRIBUTED RELATIVE. Evolution; International Journal of Organic Evolution, 2006, 60, 106.	1.1	1
783	A high incidence of parthenogenesis in agricultural pests. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 799-800.	1.2	1
784	Ecophysiological forecasting for environmental change adaptation. Functional Ecology, 2013, 27, 930-933.	1.7	1
785	Field associations of first generation densities of the pest mites Halotydeus destructor and Penthaleus major in pasture. Experimental and Applied Acarology, 2018, 76, 487-506.	0.7	1
786	Genetic correlations and their dependence on environmental similarity—Insights from livestock data. Evolution; International Journal of Organic Evolution, 2019, 73, 1672-1678.	1.1	1
787	Phylogenetic signals in pest abundance and distribution range of spider mites. BMC Evolutionary Biology, 2019, 19, 223.	3.2	1

#	Article	IF	CITATIONS
793	Genetic structure of Gahnia radula (Cyperaceae), a key sedge for revegetation. Australian Journal of Botany, 2017, 65, 128.	0.3	O
794	Environmental Stress and Evolutionary Change. , 2019, , 197-203.		O
795	Testing the environmental warming responses of <i>Brachyscome</i> daisy species using a common garden approach. Austral Ecology, 2020, 45, 717-730.	0.7	O
796	Life stages of the nonâ€native Ommatoiulus moreleti (Lucas, 1860) (Julida, Julidae) in Australian small grain systems. Agricultural and Forest Entomology, 2021, 23, 429.	0.7	0
797	Distribution of Culicoides biting midges (Diptera: Ceratopogonidae) in southern Australia and insight into the Culicoides victoriae morphoâ€variants. Austral Entomology, 2021, 60, 525-534.	0.8	O
798	Differential toxicological effects of natural and synthetic sources and enantiomeric forms of limonene on mosquito larvae. Air Quality, Atmosphere and Health, $0, 1$.	1.5	0
799	Introduction: Ain't I a Fluctuating Identity?. , 1996, , 1-7.		0
800	Characterization of the first Wolbachia from the genus Scaptodrosophila , a maleâ€killer from the rainforest species S. claytoni. Insect Science, 2022, , .	1.5	0
801	Population differentiation and intraspecific genetic admixture in two <i>Eucryptorrhynchus </i> weevils (Coleoptera: Curculionidae) across northern China. Ecology and Evolution, 2022, 12, e8806.	0.8	O
802	Australian <i>Bryobia</i> mites (Trombidiformes: Tetranychidae) form a complex of cryptic taxa with unique climatic niches and insecticide responses. Pest Management Science, 2022, , .	1.7	0
803	Chromosome Comparisons of Australian Scaptodrosophila Species. Insects, 2022, 13, 364.	1.0	O
804	Using laboratory-cultured nonbiting midge larvae (Chironomus tepperi) to identify early metabolic changes following exposure to zinc., 2022,, 291-306.		0