
Yi-Ting Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2153984/publications.pdf Version: 2024-02-01

YI-TING WU

#	Article	IF	CITATIONS
1	Simulation-Based Study of Low Minimum Operating Voltage SRAM With Inserted-Oxide FinFETs and Gate-All-Around Transistors. IEEE Transactions on Electron Devices, 2022, 69, 1823-1829.	3.0	3
2	Simulation-Based Study of High-Permittivity Inserted-Oxide FinFET With Low-Permittivity Inner Spacers. IEEE Transactions on Electron Devices, 2021, 68, 5529-5534.	3.0	2
3	Simulation-Based Study of Si/Si _{0.9} Ge _{0.1} /Si Hetero-Channel FinFET for Enhanced Performance in Low-Power Applications. IEEE Electron Device Letters, 2019, 40, 363-366.	3.9	4
4	Simulation-Based Study of High-Density SRAM Voltage Scaling Enabled by Inserted-Oxide FinFET Technology. IEEE Transactions on Electron Devices, 2019, 66, 1754-1759.	3.0	3
5	Simulation-Based Study of Hybrid Fin/Planar LDMOS Design for FinFET-Based System-on-Chip Technology. IEEE Transactions on Electron Devices, 2017, 64, 4193-4199.	3.0	25
6	High-density SRAM voltage scaling enabled by inserted-oxide FinFET technology. , 2017, , .		1
7	Cell Ratio Tuning for High-Density SRAM Voltage Scaling With Inserted-Oxide FinFETs. IEEE Electron Device Letters, 2016, 37, 1539-1542.	3.9	3