Smadar Ben-tabou De-leon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2153899/publications.pdf

Version: 2024-02-01

566801 500791 29 916 15 28 g-index citations h-index papers 35 35 35 900 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells, 2022, 11, 595.	1.8	14
2	Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo. Developmental Dynamics, 2022, 251, 1322-1339.	0.8	9
3	Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization. PLoS Computational Biology, 2021, 17, e1008780.	1.5	11
4	The tolerance to hypoxia is defined by a time-sensitive response of the gene regulatory network in sea urchin embryos. Development (Cambridge), 2021, 148, .	1.2	7
5	VEGF signaling activates the matrix metalloproteinases, MmpL7 and MmpL5 at the sites of active skeletal growth and MmpL7 regulates skeletal elongation. Developmental Biology, 2021, 473, 80-89.	0.9	18
6	The biological regulation of sea urchin larval skeletogenesis – From genes to biomineralized tissue. Journal of Structural Biology, 2021, 213, 107797.	1.3	12
7	Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12353-12362.	3.3	49
8	Developmental transcriptomes of the sea star, Patiria miniata, illuminate how gene expression changes with evolutionary distance. Scientific Reports, 2019, 9, 16201.	1.6	15
9	Parallel embryonic transcriptional programs evolve under distinct constraints and may enable morphological conservation amidst adaptation. Developmental Biology, 2017, 430, 202-213.	0.9	21
10	The network remains. History and Philosophy of the Life Sciences, 2017, 39, 32.	0.6	0
11	Regulatory heterochronies and loose temporal scaling between sea star and sea urchin regulatory circuits. International Journal of Developmental Biology, 2017, 61, 347-356.	0.3	8
12	Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks. Frontiers in Genetics, 2016, 7, 16.	1.1	4
13	Mature maternal mRNAs are longer than zygotic ones and have complex degradation kinetics in sea urchin. Developmental Biology, 2016, 414, 121-131.	0.9	8
14	Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus. Marine Genomics, 2016, 25, 89-94.	0.4	23
15	Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics. PLoS Genetics, 2015, 11, e1005435.	1.5	44
16	Gene regulatory control in the sea urchin aboral ectoderm: Spatial initiation, signaling inputs, and cell fate lockdown. Developmental Biology, 2013, 374, 245-254.	0.9	61
17	The conserved role and divergent regulation of foxa, a pan-eumetazoan developmental regulatory gene. Developmental Biology, 2011, 357, 21-26.	0.9	18
18	Information processing at the <i>foxa</i> node of the sea urchin endomesoderm specification network. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10103-10108.	3.3	55

#	Article	IF	CITATIONS
19	Perturbation analysis analyzedâ€"mathematical modeling of intact and perturbed gene regulatory circuits for animal development. Developmental Biology, 2010, 344, 1110-1118.	0.9	4
20	Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 237-246.	6.6	20
21	Modeling the dynamics of transcriptional gene regulatory networks for animal development. Developmental Biology, 2009, 325, 317-328.	0.9	84
22	The regulatory genome and the computer. Developmental Biology, 2007, 310, 187-195.	0.9	76
23	Gene Regulation: Gene Control Network in Development. Annual Review of Biophysics and Biomolecular Structure, 2007, 36, 191-212.	18.3	145
24	Deciphering the Underlying Mechanism of Specification and Differentiation: The Sea Urchin Gene Regulatory Network. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe47-pe47.	4.1	22
25	Neurons culturing and biophotonic sensing using porous silicon. Applied Physics Letters, 2004, 84, 4361-4363.	1.5	49
26	The spin structure of quasi–two-dimensional biexcitons in quantum wells. Europhysics Letters, 2002, 59, 728-734.	0.7	9
27	Exciton-exciton interactions in quantum wells: Optical properties and energy and spin relaxation. Physical Review B, 2001, 63, .	1.1	94
28	InAs/GaSb interfaces; the problem of boundary conditions. Journal of Physics Condensed Matter, 1998, 10, 8715-8729.	0.7	12
29	Energy spectrum of heterostructures. Solid State Communications, 1997, 104, 257-262.	0.9	20