
Laurens W J Bosman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2153686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	WhiskEras 2.0: Fast andÂAccurate Whisker Tracking inÂRodents. Lecture Notes in Computer Science, 2022, , 210-225.	1.3	1
2	Inducible expression of human <i>C9ORF72</i> 36× G4C2 hexanucleotide repeats is sufficient to cause RAN translation and rapid muscular atrophy in mice. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	11
3	Regionâ€specific preservation of Purkinje cell morphology and motor behavior in the ATXN1[82Q] mouse model of spinocerebellar ataxia 1. Brain Pathology, 2021, 31, e12946.	4.1	10
4	Cerebellar Purkinje cells can differentially modulate coherence between sensory and motor cortex depending on region and behavior. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
5	Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Reports, 2021, 37, 110116.	6.4	17
6	Lack of a Clear Behavioral Phenotype in an Inducible FXTAS Mouse Model Despite the Presence of Neuronal FMRpolyG-Positive Aggregates. Frontiers in Molecular Biosciences, 2020, 7, 599101.	3.5	10
7	WhiskEras: A New Algorithm for Accurate Whisker Tracking. Frontiers in Cellular Neuroscience, 2020, 14, 588445.	3.7	8
8	Stairway to Abstraction: an Iterative Algorithm for Whisker Detection in Video Frames. , 2020, , .		1
9	Functional Convergence of Autonomic and Sensorimotor Processing in the Lateral Cerebellum. Cell Reports, 2020, 32, 107867.	6.4	29
10	Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiology of Disease, 2019, 132, 104559.	4.4	24
11	Quasiperiodic rhythms of the inferior olive. PLoS Computational Biology, 2019, 15, e1006475.	3.2	25
12	Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control. Journal of Physiology, 2019, 597, 2483-2514.	2.9	37
13	Potentiation of cerebellar Purkinje cells facilitates whisker reflex adaptation through increased simple spike activity. ELife, 2018, 7, .	6.0	57
14	Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy. Frontiers in Cellular Neuroscience, 2017, 11, 346.	3.7	23
15	Towards real-time whisker tracking in rodents for studying sensorimotor disorders. , 2017, , .		11
16	Cerebellar control of gait and interlimb coordination. Brain Structure and Function, 2015, 220, 3513-3536.	2.3	109
17	Cerebellar Potentiation and Learning a Whisker-Based Object Localization Task with a Time Response Window. Journal of Neuroscience, 2014, 34, 1949-1962.	3.6	61
18	Cerebellar modules operate at different frequencies. ELife, 2014, 3, e02536.	6.0	254

LAURENS W J BOSMAN

#	Article	IF	CITATIONS
19	The effect of an mGluR5 inhibitor on procedural memory and avoidance discrimination impairments in <i>Fmr1</i> KO mice. Genes, Brain and Behavior, 2012, 11, 325-331.	2.2	60
20	Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements. Frontiers in Integrative Neuroscience, 2011, 5, 53.	2.1	211
21	Spatiotemporal firing patterns in the cerebellum. Nature Reviews Neuroscience, 2011, 12, 327-344.	10.2	373
22	GABAergic inhibition shapes frequency adaptation of cortical activity in a frequency-dependent manner. Brain Research, 2010, 1321, 31-39.	2.2	2
23	Encoding of whisker input by cerebellar Purkinje cells. Journal of Physiology, 2010, 588, 3757-3783.	2.9	100
24	GABAA receptor plasticity provides homeostasis of neuronal activity in a neocortical microcircuit model. BMC Neuroscience, 2009, 10, .	1.9	0
25	Activity-dependent plasticity of developing climbing fiber–Purkinje cell synapses. Neuroscience, 2009, 162, 612-623.	2.3	41
26	Homosynaptic Long-Term Synaptic Potentiation of the "Winner―Climbing Fiber Synapse in Developing Purkinje Cells. Journal of Neuroscience, 2008, 28, 798-807.	3.6	79
27	Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell Biology, 2007, 35, 87-101.	3.2	61
28	Mice Lacking the Major Adult GABA _A Receptor Subtype Have Normal Number of Synapses, But Retain Juvenile IPSC Kinetics Until Adulthood. Journal of Neurophysiology, 2005, 94, 338-346.	1.8	67
29	Role of synaptic inhibition in spatiotemporal patterning of cortical activity. Progress in Brain Research, 2005, 147, 201-204.	1.4	11
30	Influence of the decay time of the GABAergic postsynaptic current on the spatial spread of network activity. Neurocomputing, 2004, 58-60, 291-295.	5.9	1
31	Gabaa receptor maturation in relation to eye opening in the rat visual cortex. Neuroscience, 2004, 124, 161-171.	2.3	73
32	Somatodendritic Secretion in Oxytocin Neurons Is Upregulated during the Female Reproductive Cycle. Journal of Neuroscience, 2003, 23, 2726-2734.	3.6	95
33	Neonatal development of the rat visual cortex: synaptic function of GABA _a receptor α subunits. Journal of Physiology, 2002, 545, 169-181.	2.9	117
34	Two Distinct Signaling Pathways Mediate DIF Induction of Prestalk Gene Expression inDictyostelium. Experimental Cell Research, 1998, 245, 179-185.	2.6	17