Susan Strome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2153547/publications.pdf Version: 2024-02-01

SUSAN STROME

#	Article	IF	CITATIONS
1	DREAM interrupted: severing LIN-35-MuvB association in <i>Caenorhabditis elegans</i> impairs DREAM function but not its chromatin localization. Genetics, 2022, 221, .	1.2	1
2	Caenorhabditis elegans SET1/COMPASS Maintains Germline Identity by Preventing Transcriptional Deregulation Across Generations. Frontiers in Cell and Developmental Biology, 2020, 8, 561791.	1.8	12
3	A long lost key opens an ancient lock: <i>Drosophila</i> Myb causes a synthetic multivulval phenotype in nematodes. Biology Open, 2020, 9, .	0.6	8
4	A primer for generating and using transcriptome data and gene sets. Development (Cambridge), 2020, 147, .	1.2	6
5	Chromatin and epigenetics in development: a Special Issue. Development (Cambridge), 2019, 146, .	1.2	5
6	Sperm-inherited H3K27me3 impacts offspring transcription and development in C. elegans. Nature Communications, 2019, 10, 1271.	5.8	52
7	Repression of Germline Genes in <i>Caenorhabditis elegans</i> Somatic Tissues by H3K9 Dimethylation of Their Promoters. Genetics, 2019, 212, 125-140.	1.2	28
8	Distinct Roles of Two Histone Methyltransferases in Transmitting H3K36me3-Based Epigenetic Memory Across Generations in <i>Caenorhabditis elegans</i> . Genetics, 2018, 210, 969-982.	1.2	38
9	Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nature Communications, 2018, 9, 4310.	5.8	63
10	Inheritance of protection from osmotic stress. Nature Cell Biology, 2017, 19, 151-152.	4.6	3
11	Germ Granules Prevent Accumulation of Somatic Transcripts in the Adult <i>Caenorhabditis elegans</i> Germline. Genetics, 2017, 206, 163-178.	1.2	64
12	Loss of the Caenorhabditis elegans pocket protein LIN-35 reveals MuvB's innate function as the repressor of DREAM target genes. PLoS Genetics, 2017, 13, e1007088.	1.5	28
13	A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006227.	1.5	7
14	Structural basis for LIN54 recognition of CHR elements in cell cycle-regulated promoters. Nature Communications, 2016, 7, 12301.	5.8	52
15	Reevaluation of whether a soma–to–germ-line transformation extends lifespan in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3591-3596.	3.3	19
16	<i>Caenorhabditis elegans</i> polo-like kinase PLK-1 is required for merging parental genomes into a single nucleus. Molecular Biology of the Cell, 2015, 26, 4718-4735.	0.9	43
17	Specifying and protecting germ cell fate. Nature Reviews Molecular Cell Biology, 2015, 16, 406-416.	16.1	156
18	Defining heterochromatin in <i>C. elegans</i> through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2. Genome Research, 2015, 25, 76-88.	2.4	68

SUSAN STROME

#	Article	IF	CITATIONS
19	The DREAM complex promotes gene body H2A.Z for target repression. Genes and Development, 2015, 29, 495-500.	2.7	53
20	Regulation of the X Chromosomes in Caenorhabditis elegans. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018366-a018366.	2.3	53
21	Opposing Activities of DRM and MES-4 Tune Gene Expression and X-Chromosome Repression in Caenorhabditis elegans Germ Cells. G3: Genes, Genomes, Genetics, 2014, 4, 143-153.	0.8	8
22	Comparative analysis of metazoan chromatin organization. Nature, 2014, 512, 449-452.	13.7	363
23	H3K27me and PRC2 transmit a memory of repression across generations and during development. Science, 2014, 345, 1515-1518.	6.0	243
24	Germ-Granule Components Prevent Somatic Development in the C.Âelegans Germline. Current Biology, 2014, 24, 970-975.	1.8	129
25	Antagonism between MES-4 and Polycomb Repressive Complex 2 Promotes Appropriate Gene Expression in C.Aelegans Germ Cells. Cell Reports, 2012, 2, 1169-1177.	2.9	134
26	An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature, 2012, 484, 534-537.	13.7	147
27	Broad chromosomal domains of histone modification patterns in <i>C. elegans</i> . Genome Research, 2011, 21, 227-236.	2.4	256
28	A spatial and temporal map of <i>C. elegans</i> gene expression. Genome Research, 2011, 21, 325-341.	2.4	241
29	An assessment of histone-modification antibody quality. Nature Structural and Molecular Biology, 2011, 18, 91-93.	3.6	369
30	synMuv B proteins antagonize germline fate in the intestine and ensure <i>C. elegans</i> survival. Development (Cambridge), 2011, 138, 1069-1079.	1.2	85
31	<i>Caenorhabditis elegans</i> chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8305-8310.	3.3	108
32	Toward Reprogramming Gonads to Brains. Science, 2011, 331, 292-293.	6.0	0
33	P granules extend the nuclear pore complex environment in the <i>C. elegans</i> germ line. Journal of Cell Biology, 2011, 192, 939-948.	2.3	212
34	Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenetics and Chromatin, 2010, 3, 15.	1.8	97
35	The Histone H3K36 Methyltransferase MES-4 Acts Epigenetically to Transmit the Memory of Germline Gene Expression to Progeny. PLoS Genetics, 2010, 6, e1001091.	1.5	178
36	Integrative Analysis of the <i>Caenorhabditis elegans</i> Genome by the modENCODE Project. Science, 2010, 330, 1775-1787.	6.0	912

SUSAN STROME

#	Article	IF	CITATIONS
37	P Granule Assembly and Function in <i>Caenorhabditis elegans</i> Germ Cells. Journal of Andrology, 2010, 31, 53-60.	2.0	196
38	Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2. Genome Biology, 2010, 11, R120.	13.9	169
39	A Genomewide RNAi Screen for Genes That Affect the Stability, Distribution and Function of P Granules in Caenorhabditis elegans. Genetics, 2009, 183, 1397-1419.	1.2	93
40	Genetic Analysis of the <i>Caenorhabditis elegans</i> GLH Family of P-Granule Proteins. Genetics, 2008, 178, 1973-1987.	1.2	87
41	Germ Versus Soma Decisions: Lessons from Flies and Worms. Science, 2007, 316, 392-393.	6.0	174
42	MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development (Cambridge), 2006, 133, 3907-3917.	1.2	111
43	Subunit Contributions to Histone Methyltransferase Activities of Fly and Worm Polycomb Group Complexes. Molecular and Cellular Biology, 2005, 25, 6857-6868.	1.1	174
44	Specification of the germ line. WormBook, 2005, , 1-10.	5.3	94
45	The PGL Family Proteins Associate With Germ Granules and Function Redundantly in Caenorhabditis elegans Germline DevelopmentSequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under accession nos. AB120729 and AB120730 Genetics, 2004, 167, 645-661.	1.2	127
46	The MES-2/MES-3/MES-6 Complex and Regulation of Histone H3 Methylation in C. elegans. Current Biology, 2004, 14, 1639-1643.	1.8	169
47	Regulation of the Different Chromatin States of Autosomes and X Chromosomes in the Germ Line of C. elegans. Science, 2002, 296, 2235-2238.	6.0	113
48	Spindle Dynamics and the Role of γ-Tubulin in Early <i>Caenorhabditis elegans</i> Embryos. Molecular Biology of the Cell, 2001, 12, 1751-1764.	0.9	224
49	<i>Caenorhabditis elegans</i> MES-3 Is a Target of GLD-1 and Functions Epigenetically in Germline Development. Genetics, 2001, 159, 1007-1017.	1.2	41
50	Depletion of a Novel SET-Domain Protein Enhances the Sterility of mes-3 and mes-4 Mutants of Caenorhabditis elegans. Genetics, 2001, 159, 1019-1029.	1.2	24
51	PGL-1, a Predicted RNA-Binding Component of Germ Granules, Is Essential for Fertility in C. elegans. Cell, 1998, 94, 635-645.	13.5	340
52	The Phenotype of mes-2, mes-3, mes-4 and mes-6, Maternal-Effect Genes Required for Survival of the Germline in Caenorhabditis elegans, Is Sensitive to Chromosome Dosage. Genetics, 1998, 148, 167-185.	1.2	78
53	Specification and Development of the Germline in <i>Caenorhabditis elegans</i> . Novartis Foundation Symposium, 1994, 182, 31-51.	1.2	8
54	The germ of the issue. Nature, 1992, 358, 367-367.	13.7	8

#	Article	IF	CITATIONS
55	Early embryogenesis inCaenorhabditis elegans: The cytoskeleton and spatial organization of the zygote. BioEssays, 1988, 8, 145-149.	1.2	23
56	Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell, 1983, 35, 15-25.	13.5	533