Karuna K Nanda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2153251/publications.pdf

Version: 2024-02-01

203 papers 6,952 citations

66234 42 h-index 74018 75 g-index

206 all docs

206 docs citations

206 times ranked 9189 citing authors

#	Article	IF	CITATIONS
1	Liquid-drop model for the size-dependent melting of low-dimensional systems. Physical Review A, 2002, 66, .	1.0	540
2	Higher Surface Energy of Free Nanoparticles. Physical Review Letters, 2003, 91, 106102.	2.9	361
3	Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. International Journal of Biological Macromolecules, 2012, 51, 583-589.	3.6	295
4	One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy, 2016, 30, 303-311.	8.2	195
5	Expanding Interlayer Spacing in MoS ₂ for Realizing an Advanced Supercapacitor. ACS Energy Letters, 2019, 4, 1602-1609.	8.8	195
6	In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35025-35038.	4.0	185
7	Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential. Physical Review B, 2005, 71, .	1.1	183
8	Prussian blue as a single precursor for synthesis of Fe/Fe ₃ C encapsulated N-doped graphitic nanostructures as bi-functional catalysts. Green Chemistry, 2016, 18, 427-432.	4.6	152
9	Au Nanocomposite Based Chemiresistive Ammonia Sensor for Health Monitoring. ACS Sensors, 2016, 1, 55-62.	4.0	148
10	Phosphine-free avenue to Co ₂ P nanoparticle encapsulated N,P co-doped CNTs: a novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction. Green Chemistry, 2017, 19, 1327-1335.	4.6	141
11	Temperature-Dependent Photoluminescence of g-C ₃ N ₄ : Implication for Temperature Sensing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2181-2186.	4.0	140
12	A Oneâ€Step Method for the Growth of Ga ₂ O ₃ â€Nanorodâ€Based Whiteâ€Lightâ€Emitting Phosphors. Advanced Materials, 2009, 21, 3581-3584.	11.1	120
13	Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies. Scientific Reports, 2013, 3, 2082.	1.6	114
14	Evaporation of Free PbS Nanoparticles: Evidence of the Kelvin Effect. Physical Review Letters, 2002, 89, 256103.	2.9	105
15	Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection. Scientific Reports, 2017, 7, 15215.	1.6	102
16	Boron and Nitrogen Co-doped Carbon Nanoparticles as Photoluminescent Probes for Selective and Sensitive Detection of Picric Acid. Journal of Physical Chemistry C, 2015, 119, 13138-13143.	1.5	100
17	Energy Levels in Embedded Semiconductor Nanoparticles and Nanowires. Nano Letters, 2001, 1, 605-611.	4.5	84
18	Designing N-doped carbon nanotubes and Fe–Fe ₃ C nanostructures co-embedded in B-doped mesoporous carbon as an enduring cathode electrocatalyst for metal–air batteries. Journal of Materials Chemistry A, 2017, 5, 16843-16853.	5.2	83

#	Article	IF	Citations
19	One-Dimensional Quantum Confinement in Electrodeposited PbS Nanocrystalline Semiconductors. Advanced Materials, 2001, 13, 280-283.	11.1	79
20	Effective mass approximation for two extreme semiconductors: Band gap of PbS and CuBr nanoparticles. Journal of Applied Physics, 2004, 95, 5035-5041.	1.1	76
21	Red emitting Eu:ZnO nanorods for highly sensitive fluorescence intensity ratio based optical thermometry. Journal of Materials Chemistry C, 2017, 5, 1074-1082.	2.7	76
22	Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles. Applied Physics Letters, 2005, 87, 021909.	1.5	74
23	<i>Anthocephalus cadamba</i> shaped FeNi encapsulated carbon nanostructures for metal–air batteries as a resilient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 20411-20420.	5.2	67
24	Green synthesis of MoS ₂ nanoflowers for efficient degradation of methylene blue and crystal violet dyes under natural sun light conditions. New Journal of Chemistry, 2018, 42, 14318-14324.	1.4	65
25	Enhanced Solar Light Absorption and Photoelectrochemical Conversion Using TiN Nanoparticle-Incorporated C ₃ N ₄ â€"C Dot Sheets. ACS Applied Materials & Interfaces, 2018, 10, 2460-2468.	4.0	64
26	Unusual photoresponse of indium doped ZnO/organic thin film heterojunction. Applied Physics Letters, 2012, 100, .	1.5	62
27	Self-Powered, Broad Band, and Ultrafast InGaN-Based Photodetector. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10418-10425.	4.0	61
28	Boron-doped carbon nanoparticles: Size-independent color tunability from red to blue and bioimaging applications. Carbon, 2016, 96, 166-173.	5.4	59
29	Construction of noble-metal alloys of cobalt confined N-doped carbon polyhedra toward efficient water splitting. Green Chemistry, 2020, 22, 7884-7895.	4.6	56
30	Review on recent progress in metal–organic framework-based materials for fabricating electrochemical glucose sensors. Journal of Materials Chemistry B, 2021, 9, 7927-7954.	2.9	55
31	"Rinse, Repeat― An Efficient and Reusable SERS and Catalytic Platform Fabricated by Controlled Deposition of Silver Nanoparticles on Cellulose Paper. ACS Sustainable Chemistry and Engineering, 2019, 7, 14089-14101.	3.2	54
32	Surface Tension and Sintering of Free Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 13488-13491.	1.5	52
33	Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts. Chemical Communications, 2019, 55, 13928-13931.	2.2	51
34	CoFe Nanoalloys Encapsulated in N-Doped Graphene Layers as a Pt-Free Multifunctional Robust Catalyst: Elucidating the Role of Co-Alloying and N-Doping. ACS Sustainable Chemistry and Engineering, 2018, 6, 12736-12745.	3.2	50
35	A one-step technique to prepare aligned arrays of carbon nanotubes. Nanotechnology, 2008, 19, 155602.	1.3	46
36	Facile synthesis of ultrafine Ru nanocrystal supported N-doped graphene as an exceptional hydrogen evolution electrocatalyst in both alkaline and acidic media. Sustainable Energy and Fuels, 2017 , 1 , $1028-1033$.	2.5	46

#	Article	IF	CITATIONS
37	Designing Dual Emissions via Co-doping or Physical Mixing of Individually Doped ZnO and Their Implications in Optical Thermometry. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16305-16312.	4.0	46
38	Maximizing the utilization of Fe–N _x C/CN _x centres for an air-cathode material and practical demonstration of metal–air batteries. Journal of Materials Chemistry A, 2017, 5, 20252-20262.	5.2	46
39	Defect and strain modulated highly efficient ZnO UV detector: Temperature and low-pressure dependent studies. Applied Surface Science, 2020, 505, 144365.	3.1	46
40	The dual role of Zn–acid medium for one-step rapid synthesis of M@rGO (M = Au, Pt, Pd and Ag) hybrid nanostructures at room temperature. Chemical Communications, 2013, 49, 8949.	2.2	45
41	Wideâ€Range Temperature Sensing using Highly Sensitive Greenâ€Luminescent ZnO and PMMAâ€ZnO Film as a Nonâ€Contact Optical Probe. Angewandte Chemie - International Edition, 2013, 52, 11325-11328.	7.2	44
42	Facile synthesis of large area porous Cu2O as super hydrophobic yellow-red phosphors. RSC Advances, 2012, 2, 3647.	1.7	42
43	Non-Precious Bimetallic CoCr Nanostructures Entrapped in Bamboo-Like Nitrogen-Doped Graphene Tube As a Robust Bifunctional Electrocatalyst for Total Water Splitting. ACS Applied Energy Materials, 2018, 1, 1116-1126.	2.5	41
44	Defect-Mediated Transport in Self-Powered, Broadband, and Ultrafast Photoresponse of a MoS ₂ /AlN/Si-Based Photodetector. ACS Applied Electronic Materials, 2020, 2, 944-953.	2.0	40
45	pH-dependent hydrogen evolution using spatially confined ruthenium on hollow N-doped carbon nanocages as a Mott–Schottky catalyst. Journal of Materials Chemistry A, 2021, 9, 13958-13966.	5.2	40
46	Phenomenological Predictions of Cohesive Energy and Structural Transition of Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 1033-1037.	1.2	39
47	Facile and one-step synthesis of a free-standing 3D MoS ₂ –rGO/Mo binder-free electrode for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 18081-18087.	5.2	39
48	A comprehensive analysis and rational designing of efficient Fe-based oxygen electrocatalysts for metal–air batteries. Journal of Materials Chemistry A, 2018, 6, 8537-8548.	5.2	39
49	Toward a Fast and Highly Responsive SnSe ₂ -Based Photodiode by Exploiting the Mobility of the Counter Semiconductor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6184-6194.	4.0	39
50	Inner Sphere Electron Transfer Promotion on Homogeneously Dispersed Fe-N <i></i> Centers for Energy-Efficient Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 36026-36039.	4.0	39
51	Liquid-drop model for the surface energy of nanoparticles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1647-1649.	0.9	37
52	An electrochemical method for the synthesis of few layer graphene sheets for high temperature applications. Chemical Communications, 2014, 50, 4613.	2.2	36
53	An efficient on-board metal-free nanocatalyst for controlled room temperature hydrogen production. Chemical Science, 2017, 8, 2994-3001.	3.7	36
54	Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency blue light converter and UV screen. Applied Surface Science, 2020, 510, 145405.	3.1	36

#	Article	IF	Citations
55	Excellent performance of Pt-free cathode in alkaline direct methanol fuel cell at room temperature. Journal of Materials Chemistry A, 2013, 1, 3133.	5.2	35
56	Instantaneous reduction of graphene oxide at room temperature. RSC Advances, 2013, 3, 12621.	1.7	34
57	Facile hydrothermal synthesis of carbon nanoparticles and possible application as white light phosphors and catalysts for the reduction of nitrophenol. RSC Advances, 2014, 4, 11481.	1.7	34
58	A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts. Dalton Transactions, 2016, 45, 6352-6356.	1.6	33
59	A unique approach to designing resilient bi-functional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres. Journal of Materials Chemistry A, 2017, 5, 10544-10553.	5.2	33
60	In-Plane Anisotropic Photoconduction in Nonpolar Epitaxial <i>a</i> -Plane GaN. ACS Applied Materials & amp; Interfaces, 2018, 10, 16918-16923.	4.0	33
61	High-entropy alloys for water oxidation: a new class of electrocatalysts to look out for. Chemical Communications, 2021, 57, 611-614.	2.2	33
62	Synthesis of zinc oxide porous structures by anodization with water as an electrolyte. Applied Physics A: Materials Science and Processing, 2012, 109, 151-157.	1.1	32
63	In Situ Decoration of Ultrafine Ru Nanocrystals on N-Doped Graphene Tube and Their Applications as Oxygen Reduction and Hydrogen Evolution Catalyst. ACS Applied Energy Materials, 2019, 2, 7330-7339.	2.5	32
64	Self-assembled heterojunction between electrodeposited PbS nanoparticles and indium tin oxide substrate. Applied Physics Letters, 2001, 79, 2743-2745.	1.5	31
65	Size-Dependent Melting of Finite-Length Nanowires. Journal of Physical Chemistry C, 2010, 114, 14327-14331.	1.5	31
66	Ultrahigh-sensitive optical temperature sensing based on quasi-thermalized green emissions from Er:ZnO. Physical Chemistry Chemical Physics, 2017, 19, 2346-2352.	1.3	31
67	Highly Responsive, Self-Powered <i>a</i> -GaN Based UV-A Photodetectors Driven by Unintentional Asymmetrical Electrodes. ACS Applied Electronic Materials, 2020, 2, 769-779.	2.0	31
68	Mechanistic Investigation into Efficient Water Oxidation by Co–Ni-Based Hybrid Oxide–Hydroxide Flowers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13888-13895.	4.0	31
69	Next-generation self-powered and ultrafast photodetectors based on III-nitride hybrid structures. APL Materials, 2020, 8, .	2.2	30
70	Self-Organized Single-Atom Tungsten Supported on the N-Doped Carbon Matrix for Durable Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43586-43595.	4.0	29
71	Interface characterization of nanocrystalline CdS/Au junction by current–voltage and capacitance–voltage studies. Journal of Applied Physics, 1999, 85, 3666-3670.	1.1	28
72	Nitrogen-assisted electroless assembling of 3D nanodendrites consisting of Pd and N-doped carbon nanoparticles as bifunctional catalysts. Green Chemistry, 2016, 18, 2115-2121.	4.6	28

#	Article	IF	CITATIONS
73	Atomic Arrangement Modulation in CoFe Nanoparticles Encapsulated in N-Doped Carbon Nanostructures for Efficient Oxygen Reduction Reaction. ACS Applied Materials & Diterfaces, 2021, 13, 3771-3781.	4.0	28
74	Thermal oxidation strategy for the synthesis of phase-controlled GeO ₂ and photoluminescence characterization. CrystEngComm, 2013, 15, 1043-1046.	1.3	27
75	Wide-Range Thermometry at Micro/Nano Length Scales with In ₂ O ₃ Octahedrons as Optical Probes. ACS Applied Materials & Interfaces, 2015, 7, 23481-23488.	4.0	27
76	Sequential Elemental Dealloying Approach for the Fabrication of Porous Metal Oxides and Chemiresistive Sensors Thereof for Electronic Listening. ACS Applied Materials & Enterfaces, 2017, 9, 41428-41434.	4.0	27
77	Temperature sensing using sulfur-doped carbon nanoparticles. Carbon, 2018, 133, 200-208.	5.4	27
78	Visible light emission from CdS nanocrystals. Journal Physics D: Applied Physics, 1999, 32, 2306-2310.	1.3	25
79	Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction. Dalton Transactions, 2015, 44, 4215-4222.	1.6	25
80	Enhanced UV Photodetector Response of ZnO/Si With AlN Buffer Layer. IEEE Transactions on Electron Devices, 2017, 64, 4161-4166.	1.6	25
81	<i>In situ</i> self-organization of uniformly dispersed Co–N–C centers at moderate temperature without a sacrificial subsidiary metal. Green Chemistry, 2021, 23, 3115-3126.	4.6	24
82	Temperature-Dependent Electrical Transport and Optoelectronic Properties of SnS ₂ /p-Si Heterojunction. ACS Applied Electronic Materials, 2020, 2, 2155-2163.	2.0	23
83	FeCoNiMnCr High-Entropy Alloy Nanoparticle-Grafted NCNTs with Promising Performance in the Ohmic Polarization Region of Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16108-16116.	4.0	23
84	Size-dependent density of nanoparticles and nanostructured materials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3301-3302.	0.9	20
85	Detailed understanding of the excitation-intensity dependent photoluminescence of ZnO materials: Role of defects. Journal of Applied Physics, 2014, 115, .	1.1	20
86	Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat. Applied Energy, 2017, 205, 1050-1058.	5.1	20
87	An Extrinsic Approach Toward Achieving Fast Response and Selfâ€Powered Photodetector. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800470.	0.8	20
88	Self-powered, ultrasensitive, room temperature humidity sensors using SnS2 nanofilms. Scientific Reports, 2020, 10, 14611.	1.6	20
89	Understanding the ammonia sensing behavior of filter coffee powder derived N-doped carbon nanoparticles using the Freundlich-like isotherm. Journal of Materials Chemistry A, 2016, 4, 8860-8865.	5.2	19
90	Double Gaussian distribution of barrier heights and self-powered infrared photoresponse of InN/AlN/Si (111) heterostructure. Journal of Applied Physics, 2019, 126, .	1.1	19

#	Article	IF	Citations
91	Device Architecture for Visible and Near-Infrared Photodetectors Based on Two-Dimensional SnSe2 and MoS2: A Review. Micromachines, 2020, 11, 750.	1.4	19
92	Differentiation of ultraviolet/visible photons from near infrared photons by MoS2/GaN/Si-based photodetector. Applied Physics Letters, 2021, 119 , .	1.5	19
93	Current Insight into 3D Printing in Solidâ€State Lithiumâ€Ion Batteries: A Perspective. Batteries and Supercaps, 2022, 5, .	2.4	19
94	Size-dependent melting of small particles: a classical approach. European Journal of Physics, 1998, 19, 471-472.	0.3	18
95	Effective Surface Area Tuning of Noble Metal-Free CuBO ₂ /rGO Nanohybrid for Efficient Hydrogen Production with "On–Off―Switching. ACS Applied Energy Materials, 2019, 2, 260-268.	2.5	18
96	Hexamethylenetetramine mediated simultaneous nitrogen doping and reduction of graphene oxide for a metal-free SERS substrate. RSC Advances, 2014, 4, 44146-44150.	1.7	17
97	MgO Nanocubes as Self-Calibrating Optical Probes for Efficient Ratiometric Detection of Picric Acid in the Solid State. ACS Sustainable Chemistry and Engineering, 2018, 6, 13719-13729.	3.2	17
98	Highly Responsive ZnO/AlN/Si Heterostructure-Based Infrared- and Visible-Blind Ultraviolet Photodetectors With High Rejection Ratio. IEEE Transactions on Electron Devices, 2019, 66, 1345-1352.	1.6	17
99	Photodetection Properties of Nonpolar aâ€Plane GaN Grown by Three Approaches Using Plasmaâ€Assisted Molecular Beam Epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900171.	0.8	17
100	Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst. Nanoscale, 2017, 9, 12628-12636.	2.8	16
101	Alkaline earth metal based single atom catalyst for the highly durable oxygen reduction reaction. Applied Materials Today, 2020, 21, 100846.	2.3	16
102	Unique One-Step Strategy for Nonmetallic and Metallic Heteroatom Doped Carbonaceous Materials. ACS Omega, 2020, 5, 32852-32860.	1.6	16
103	Different types of band alignment at MoS2/(Al, Ga, In)N heterointerfaces. Applied Physics Letters, 2020, 116, .	1.5	16
104	Studies towards synthesis, evolution and alignment characteristics of dense, millimeter long multiwalled carbon nanotube arrays. Beilstein Journal of Nanotechnology, 2011, 2, 293-301.	1.5	15
105	Experimental evidence on RH-dependent crossover from an electronic to protonic conduction with an oscillatory behaviour. Applied Physics Letters, $2017, 110, \ldots$	1.5	15
106	The Untold Tale of the ORR Polarization Curve. Journal of Physical Chemistry C, 2021, 125, 10378-10385.	1.5	15
107	Comment on "Size-dependent melting behavior of Zn nanowire arrays―[Appl. Phys. Lett. 88, 173114 (2006)]. Applied Physics Letters, 2007, 91, 196101.	1.5	14
108	Controllable resistance and temperature dependency of carbon nanotube bundles. Applied Physics Letters, 2008, 93, 063105.	1.5	14

#	Article	IF	CITATIONS
109	Tunable device properties of free-standing inorganic/organic flexible hybrid structures obtained by exfoliation. Applied Physics Letters, 2012, 100, .	1.5	14
110	Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices. AIP Advances, 2013, 3, 082106.	0.6	14
111	Reduced graphene oxide-based broad band photodetector and temperature sensor: effect of gas adsorption on optoelectrical properties. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	14
112	Investigation of electrical, mechanical, and thermal properties of functionalized multiwalled carbon nanotubesâ€reduced graphene Oxide/PMMA hybrid nanocomposites. Polymer Engineering and Science, 2019, 59, 1075-1083.	1.5	14
113	Photon-Free Degradation of Dyes by Ge/GeO ₂ Porous Microstructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 6611-6618.	3.2	14
114	Mechanistic study on nitrogen-doped graphitic carbon-reinforced chromium nitride as a durable electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 16575-16584.	5.2	14
115	Electronic structure modulation of molybdenum-iron double-atom catalyst for bifunctional oxygen electrochemistry. Chemical Engineering Journal, 2022, 449, 137705.	6.6	14
116	Ruthenium nanodendrites on reduced graphene oxide: an efficient water and 4-nitrophenol reduction catalyst. New Journal of Chemistry, 2021, 45, 1556-1564.	1.4	13
117	Trimetallic oxide-hydroxide porous nanosheets for efficient water oxidation. Chemical Engineering Journal, 2022, 435, 135019.	6.6	13
118	Preparation temperature effect on the synthesis of various carbon nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 164, 140-150.	1.7	12
119	Towards the understanding of formation of micro/nano holes of Ge/GeO2 through phase mapping. CrystEngComm, 2013, 15, 4049.	1.3	12
120	Solution-Processed SnSe $<$ sub $>$ 2 $<$ /sub $>$ â \in "RGO-Based Bulk Heterojunction for Self-Powered and Broadband Photodetection. ACS Applied Electronic Materials, 2021, 3, 3131-3138.	2.0	12
121	Self-Assembled TMD Nanoparticles on N-Doped Carbon Nanostructures for Oxygen Reduction Reaction and Electrochemical Oxygen Sensing Thereof. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5134-5148.	4.0	12
122	The temperature dependence of the forward characteristics of 1N4007 silicon diode. Review of Scientific Instruments, 1994, 65, 3289-3290.	0.6	11
123	Uninterrupted and reusable source for the controlled growth of nanowires. Scientific Reports, 2013, 3, 1172.	1.6	11
124	White Light Emission from Black Germanium. ACS Photonics, 2017, 4, 1722-1729.	3.2	11
125	Ultrafast-Versatile-Domestic-Microwave-Oven Based Graphene Oxide Reactor for the Synthesis of Highly Efficient Graphene Based Hybrid Electrocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 4037-4045.	3.2	11
126	Harvesting energy via stimuliâ€free water/moisture dissociation by mesoporous SnO ₂ –based hydroelectric cell and CuO as a pump for atmospheric moisture. International Journal of Energy Research, 2020, 44, 1276-1283.	2.2	11

#	ARTICLE LIESTIFICATION	IF	CITATIONS
127	xmlns:mmíl="http://www.w3.org/1998/Math/MathML" display="inline" ^ overflow="scroll"> <mml:msub><mml:mrow><mml:mi>Mo</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> ///////////////////////////////////////	Ini:mrow>	<mml:mi>Zr</mml:mi>
128	Applied, 2022, 17, . Synthesis of one-dimensional N-doped Ga2O3 nanostructures: different morphologies and different mechanisms. Bulletin of Materials Science, 2011, 34, 1331-1338.	0.8	10
129	Thermodynamic Models for the Size-dependent Melting of Nanoparticles: Different Hypotheses. Current Nanoscience, 2012, 8, 305-311.	0.7	10
130	Carbon nanotube mat as substrate for ZnO nanotip field emitters. RSC Advances, 2012, 2, 2713.	1.7	10
131	Luminescence from wide band gap materials and their applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 015002.	0.7	10
132	Large scale synthesis of reduced graphene oxide using ferrocene and HNO3. Materials Letters, 2018, 211, 335-338.	1.3	10
133	Insights into Improving Photoelectrochemical Waterâ€Splitting Performance Using Hematite Anode. Energy Technology, 2022, 10, 2100457.	1.8	10
134	Spatially dispersed one-dimensional carbon architecture on oxide framework for oxygen electrochemistry. Chemical Engineering Journal, 2022, 433, 133649.	6.6	10
135	Universal avenue to metal-transition metal carbide grafted N-doped carbon framework as efficient dual Mott-Schottky electrocatalysts for water splitting. Sustainable Materials and Technologies, 2022, 33, e00451.	1.7	10
136	Multistage effect in enhancing the field emission behaviour of ZnO branched nanostructures. Applied Physics Letters, 2014, 104, .	1.5	9
137	Effects of nanoscale morphology and defects in oxide: optoelectronic functions of zinc oxide nanowires. Radiation Effects and Defects in Solids, 2016, 171, 22-33.	0.4	9
138	Mechanistic view on efficient photodetection by solvothermally reduced graphene oxide. Journal of Materials Science: Materials in Electronics, 2017, 28, 14818-14826.	1.1	9
139	Effect of inhomogeneous mesoporosity and defects on the luminescent properties of slanted silicon nanowires prepared by facile metal-assisted chemical etching. Journal of Applied Physics, 2018, 124, 104303.	1.1	9
140	Temperature Dependent "S-Shaped―Photoluminescence Behavior of InGaN Nanolayers: Optoelectronic Implications in Harsh Environment. ACS Applied Nano Materials, 2020, 3, 8453-8460.	2.4	9
141	Interfacial Electron Transfer Strategy to Improve the Hydrogen Evolution Catalysis of CrP Heterostructure. Small, 2022, 18, e2106139.	5.2	9
142	MoS2/SnO2 heterojunction-based self-powered photodetector. Applied Physics Letters, 2022, 120, .	1.5	9
143	Electrical properties of 1N4007 silicon diode. Review of Scientific Instruments, 1997, 68, 2904-2908.	0.6	8
144	Melting and superheating of nanowiresâ€"a nanotube approach. Nanotechnology, 2010, 21, 205701.	1.3	8

#	Article	IF	Citations
145	Evolution of crystallinity of free gold agglomerates and shape transformation. RSC Advances, 2011, 1, 568.	1.7	8
146	Thioacetamide-derived nitrogen and sulfur co-doped carbon nanoparticles used for label-free detection of copper(<scp>ii</scp>) ions and bioimaging applications. New Journal of Chemistry, 2017, 41, 13742-13746.	1.4	8
147	Reduced graphene oxide film based highly responsive infrared detector. Materials Research Express, 2017, 4, 085603.	0.8	8
148	On the origin of metallicity and stability of the metastable phase in chemically exfoliated MoS2. Applied Materials Today, 2020, 19, 100544.	2.3	8
149	Energy-Efficient Rational Designing of Multifunctional Nanocomposites by Preferential Anchoring of Metal Ions via Fermi Level Positioning of Carbon Nanostructures. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 53749-53759.	4.0	8
150	Asymmetric Supercapacitors with Nanostructured RuS ₂ . Energy & Description (2021, 35, 12671-12679.	2.5	8
151	Design of Hierarchical Oxide arbon Nanostructures for Trifunctional Electrocatalytic Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	8
152	Mechanism for the Compressive Strain Induced Oscillations in the Conductance of Carbon Nanotubes. Physical Review Letters, 2013, 110, 095504.	2.9	7
153	Electrical transport modulation of VO2/Si(111) heterojunction by engineering interfacial barrier height. Journal of Applied Physics, 2021, 129, .	1.1	7
154	Designed synthesis of a hierarchical MoSe ₂ @WSe ₂ hybrid nanostructure as a bifunctional electrocatalyst for total water-splitting. Sustainable Energy and Fuels, 2022, 6, 1708-1718.	2.5	7
155	Excellent field emission from semialigned carbon nanofibers grown on cylindrical copper surface. Applied Physics Letters, 2009, 95, 083108.	1.5	6
156	On the paradoxical relation between the melting temperature and forbidden energy gap of nanoparticles. Journal of Chemical Physics, 2010, 133, 054502.	1.2	6
157	ZnO/Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate) Based Ultraviolet and Visible Photodetectors: Role of Defects. Materials Express, 2012, 2, 251-256.	0.2	6
158	Giant enhancement in photoresponse via engineering of photo-induced charge (electron and hole) transfer in linear and non-linear devices. Sensors and Actuators A: Physical, 2020, 304, 111842.	2.0	6
159	Gas-phase synthesis of size-classified polyhedral In2O3 nanoparticles. Journal of Materials Chemistry, 2012, 22, 3133.	6.7	5
160	Note: Simultaneous water quality monitoring and degradation of hazardous organic pollutants. Review of Scientific Instruments, 2018, 89, 096102.	0.6	5
161	Uniform Distribution of Ruthenium Nanoparticles on Nitrogen-Doped Carbon Nanostructure for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 12191-12200.	2.5	5
162	Electrical breakdown of carbon nanotube devices and the predictability of breakdown position. AIP Advances, $2012, 2, \ldots$	0.6	4

#	Article	IF	CITATIONS
163	Electrical characteristics of multiwalled carbon nanotube arrays and influence of pressure. AIP Advances, 2012, 2, 022103.	0.6	4
164	Anisotropic electrical transport properties of poly(methyl methacrylate) infiltrated aligned carbon nanotube mats. Applied Physics Letters, 2012, 100, .	1.5	4
165	Doping by diffusion of dopants from the substrate: synthesis of doped ZnO nanowires. Journal of Materials Chemistry C, 2013, 1, 1066-1069.	2.7	4
166	Si-mediated fabrication of reduced graphene oxide and its hybrids for electrode materials. Green Chemistry, 2015, 17, 776-780.	4.6	4
167	Overcoming the Challenges Associated with the InN/InGaN Heterostructure via a Nanostructuring Approach for Broad Band Photodetection. ACS Applied Electronic Materials, 2021, 3, 4243-4253.	2.0	4
168	Nicotiana genus: a green and sustainable source for designing of nitrogen-rich efficient carbon nanocomposites for the hydrogenation of nitrophenol and non-enzymatic glucose sensing. Materials Today Sustainability, 2022, 17, 100085.	1.9	4
169	Size-Dependent Cohesive Energy and Melting Of Non-Spherical Nanoparticles. , 2008, , .		3
170	Core-Shell Nanostructures: Modeling, Fabrication, Properties, and Applications. Journal of Nanomaterials, 2012, 2012, 1-2.	1.5	3
171	Fabrication of Highly Dense Nanoholes by Self-Assembled Gallium Droplet on Silicon Surface. Materials Express, 2012, 2, 245-250.	0.2	3
172	A comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions. AIP Advances, 2013, 3, .	0.6	3
173	Understanding of nitrogen-doped carbon nanoparticles based solid phosphors for white light emitting diodes. RSC Advances, 2016, 6, 67751-67755.	1.7	3
174	Identifying the Accuracy of Various Approaches for Determining the Fraction of Surface Atoms in a Nanoparticle to Deepen Students' Understanding of Size-Dependent Properties. Journal of Chemical Education, 2021, 98, 1982-1987.	1.1	3
175	Inhomogeneity-mediated systematic reduction of the Schottky barrier in a Au/GaN nanorod film interface. Semiconductor Science and Technology, 2021, 36, 015017.	1.0	3
176	Direct White Light Nanophosphors. Key Engineering Materials, 2010, 444, 219-228.	0.4	2
177	Near white light emission from ZnO nanostructures. Materials Research Society Symposia Proceedings, 2011, 1303, 63.	0.1	2
178	Shape Transformation of ZnO Nanorods /Nanotubes at Low Temperature. Current Nanoscience, 2012, 8, 156-160.	0.7	2
179	Ultralong ZnO nanowires: Problems and prospects. Materials Express, 2013, 3, 185-200.	0.2	2
180	Strong Red Luminescent Twin ZnO Nanorods for Nano-thermometry Application. MRS Advances, 2016, 1, 869-874.	0.5	2

#	Article	IF	CITATIONS
181	Group III-Nitrides and Their Hybrid Structures for Next-Generation Photodetectors. , 0, , .		2
182	Pulsed Laser Deposition of Transition Metal Dichalcogenides-Based Heterostructures for Efficient Photodetection. , 0, , .		2
183	Modulating the Midgap States of 3D–2D Hybrid ZnO by Codoping and Its Effect on Visible Photocatalysis. Industrial & Description (2022, 61, 4244-4254).	1.8	2
184	Enhancement of Photoresponsivity of \hat{l}^2 -ln ₂ S ₃ /Si Broadband Photodetector by Decorating With Reduced-Graphene Oxide. IEEE Transactions on Electron Devices, 2022, 69, 4355-4361.	1.6	2
185	Synthesis Conditions and Superconductivity in 123-Type Superconductors. Journal of Superconductivity and Novel Magnetism, 1998, 11, 649-652.	0.5	1
186	Synthesis of Porous Cuprous Oxide (Cu[sub 2]O) on Cu Foil., 2011,,.		1
187	Large scale synthesis of ultralong aligned buckled multiwalled carbon nanotubes by one-step pyrolysis. CrystEngComm, 2012, 14, 7161.	1.3	1
188	Recycle and reuse of substrates and the deposit materials. RSC Advances, 2012, 2, 12136.	1.7	1
189	Enhanced photocatalytic activity of ultra-high aspect ratio ZnO nanowires due to Cu induced defects. Radiation Effects and Defects in Solids, 2015, 170, 939-944.	0.4	1
190	Negative-charge-functionalized carbon nanodot: a low-cost smart cold emitter. Nanotechnology, 2017, 28, 395705.	1.3	1
191	ZnO hybrid microstructures as dark catalyst. AIP Conference Proceedings, 2019, , .	0.3	1
192	Unconventional energy transfer from narrow to broad luminescent wide band gap materials. Europhysics Letters, 2019, 127, 17003.	0.7	1
193	Preparation and Optical Properties ZnO Dumb-Bell Like Microcrystals. , 2011, , .		O
194	Electrical properties of buckled multiwalled carbon nanotube arrays in the diffusive regime. Europhysics Letters, 2012, 99, 56006.	0.7	0
195	An Efficient and Environment Friendly Universal-White-Light-Emitting ZnO Nanophosphors. Current Nanoscience, 2012, 8, 914-918.	0.7	0
196	Excitation- and power-dependent photoluminescence from oxidized Ge. Materials Letters, 2013, 101, 5-8.	1.3	0
197	Various quantum mechanical concepts for confinements in semiconductor nanocrystals. Resonance, 2013, 18, 771-776.	0.2	0
198	Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction. AIP Conference Proceedings, 2015, , .	0.3	0

#	Article	IF	CITATIONS
199	Air stable iron/iron carbide magnetic nanoparticles embedded in amorphous carbon globules. AIP Conference Proceedings, 2015, , .	0.3	O
200	Evaporation-condensation synthesis and optical property of In2O3 octahedrons. AIP Conference Proceedings, 2015, , .	0.3	0
201	Nickel in nitrogen-doped graphene nanotube as efficient electrocatalyst for water splitting. AIP Conference Proceedings, 2020, , .	0.3	O
202	Robust Visible-Blind Wearable Infrared Sensor Based on IrP2 Nanoparticle-Embedded Few-Layer Graphene and the Effect of Photogating. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54258-54265.	4.0	0
203	Dependence of defect structure on In concentration in InGaN epilayers grown on AlN/Si (111) substrate. Materials Advances, 0, , .	2.6	0