
Denis Renard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2153053/publications.pdf Version: 2024-02-01

DENIS PENADO

#	Article	IF	CITATIONS
1	Droplet Microfluidics for Food and Nutrition Applications. Micromachines, 2021, 12, 863.	2.9	30
2	Adsorption Behavior of Arabinogalactan-Proteins (AGPs) from <i>Acacia senegal</i> Gum at a Solid–Liquid Interface. Langmuir, 2021, 37, 10547-10559.	3.5	5
3	Combining plant and dairy proteins in food colloid design. Current Opinion in Colloid and Interface Science, 2021, 56, 101507.	7.4	9
4	Dense Phases of Î ³ -Gliadins in Confined Geometries. Colloids and Interfaces, 2021, 5, 51.	2.1	2
5	Optimization of a Droplet-Based Millifluidic Device to Investigate the Phase Behavior of Biopolymers, Including Viscous Conditions. Food Biophysics, 2020, 15, 463-472.	3.0	2
6	Semi-permeable vesicles produced by microfluidics to tune the phase behaviour of encapsulated macromolecules. Journal of Colloid and Interface Science, 2020, 580, 709-719.	9.4	12
7	New exploration of the Î ³ -gliadin structure through its partial hydrolysis. International Journal of Biological Macromolecules, 2020, 165, 654-664.	7.5	6
8	Characterization of Core-Shell Alginate Capsules. Food Biophysics, 2019, 14, 467-478.	3.0	20
9	Role of protein conformation and weak interactions on Î ³ -gliadin liquid-liquid phase separation. Scientific Reports, 2019, 9, 13391.	3.3	18
10	Adsorption of Hyperbranched Arabinogalactan-Proteins from Plant Exudate at the Solid–Liquid Interface. Colloids and Interfaces, 2019, 3, 49.	2.1	9
11	Soft-Matter Approaches for Controlling Food Protein Interactions and Assembly. Annual Review of Food Science and Technology, 2019, 10, 521-539.	9.9	29
12	Associative properties of rapeseed napin and pectin: Competition between liquid-liquid and liquid-solid phase separation. Food Hydrocolloids, 2019, 92, 94-103.	10.7	17
13	Proteins for the future: A soft matter approach to link basic knowledge and innovative applications. Innovative Food Science and Emerging Technologies, 2018, 46, 18-28.	5.6	10
14	Application of Millifluidics to Encapsulate and Support Viable Human Mesenchymal Stem Cells in a Polysaccharide Hydrogel. International Journal of Molecular Sciences, 2018, 19, 1952.	4.1	11
15	Flexibility and Hydration of Amphiphilic Hyperbranched Arabinogalactan-Protein from Plant Exudate: A Volumetric Perspective. Colloids and Interfaces, 2018, 2, 11.	2.1	14
16	Oil encapsulation in core–shell alginate capsules by inverse gelation. I: dripping methodology. Journal of Microencapsulation, 2017, 34, 82-90.	2.8	22
17	A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique. Reactive and Functional Polymers, 2017, 114, 49-57.	4.1	22
18	Silica nanofibers as a new drug delivery system: a study of the protein–silica interactions. Journal of Materials Chemistry B, 2017, 5, 2908-2920.	5.8	25

DENIS RENARD

#	Article	IF	CITATIONS
19	Droplets-based millifluidic for the rapid determination of biopolymers phase diagrams. Food Hydrocolloids, 2017, 70, 134-142.	10.7	11
20	Oil encapsulation in core–shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions. Journal of Microencapsulation, 2017, 34, 522-534.	2.8	15
21	Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. Journal of Microencapsulation, 2017, 34, 754-771.	2.8	87
22	Monodisperse core-shell alginate (micro)-capsules with oil core generated from droplets millifluidic. Food Hydrocolloids, 2017, 63, 447-456.	10.7	35
23	Oil core microcapsules by inverse gelation technique. Journal of Microencapsulation, 2015, 32, 86-95.	2.8	34
24	Microfluidics-Assisted Diffusion Self-Assembly: Toward the Control of the Shape and Size of Pectin Hydrogel Microparticles. Biomacromolecules, 2014, 15, 1568-1578.	5.4	32
25	A pendant drop method for the production of calibrated double emulsions and emulsion gels. RSC Advances, 2014, 4, 28504-28510.	3.6	19
26	Microfluidic Generation and Selective Degradation of Biopolymer-Based Janus Microbeads. Biomacromolecules, 2012, 13, 1197-1203.	5.4	63
27	Soluble and filamentous proteins in <i>Arabidopsis</i> sieve elements. Plant, Cell and Environment, 2012, 35, 1258-1273.	5.7	68
28	MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Plant, Cell and Environment, 2010, 33, 418-430.	5.7	88
29	Binding Properties of the <i>N</i> -Acetylglucosamine and High-Mannose <i>N</i> -Glycan PP2-A1 Phloem Lectin in Arabidopsis. Plant Physiology, 2010, 153, 1345-1361.	4.8	83
30	Exploring the interactions of gliadins with model membranes: Effect of confined geometry and interfaces. Biopolymers, 2009, 91, 610-622.	2.4	24
31	Temperature Affects the Supramolecular Structures Resulting from α-Lactalbuminâ^'Lysozyme Interaction. Biochemistry, 2007, 46, 1248-1255.	2.5	79
32	Structure and Orientation Changes of ω- and γ-Gliadins at the Airâ^'Water Interface:  A PMâ^'IRRAS Spectroscopy and Brewster Angle Microscopy Study. Langmuir, 2007, 23, 13066-13075.	3.5	53
33	AcaciasenegalGum:Â Continuum of Molecular Species Differing by Their Protein to Sugar Ratio, Molecular Weight, and Charges. Biomacromolecules, 2006, 7, 2637-2649.	5.4	195
34	Swelling Behavior and Controlled Release of Theophylline and Sulfamethoxazole Drugs in β-Lactoglobulin Protein Gels Obtained by Phase Separation in Water/Ethanol Mixture. Biomacromolecules, 2006, 7, 323-330.	5.4	27
35	Gliadin Characterization by Sans and Gliadin Nanoparticle Growth Modelization. Journal of Nanoscience and Nanotechnology, 2006, 6, 3171-3178.	0.9	19
36	Complex coacervation between β-lactoglobulin and Acacia gum: A nucleation and growth mechanism. Journal of Colloid and Interface Science, 2006, 299, 867-873.	9.4	81

DENIS RENARD

#	Article	IF	CITATIONS
37	The gap between food gel structure, texture and perception. Food Hydrocolloids, 2006, 20, 423-431.	10.7	135
38	pH-Induced Structural Transitions during Complexation and Coacervation of \hat{I}^2 -Lactoglobulin and Acacia Gum. Langmuir, 2005, 21, 386-394.	3.5	120
39	Detailed Physicochemical Characterization of the 2S Storage Protein from Rape (Brassica napusL.). Journal of Agricultural and Food Chemistry, 2004, 52, 5995-6001.	5.2	38
40	Formation of tubules and giant vesicles from large multilamellar vesicles. Journal of Colloid and Interface Science, 2003, 266, 477-480.	9.4	9
41	Structure and rheological properties of acacia gum dispersions. Food Hydrocolloids, 2002, 16, 257-267.	10.7	202
42	Stability and structure of protein–polysaccharide coacervates in the presence of protein aggregates. International Journal of Pharmaceutics, 2002, 242, 319-324.	5.2	48
43	Study of β-lactoglobulin/acacia gum complex coacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy. Colloids and Surfaces B: Biointerfaces, 2001, 20, 267-280.	5.0	97
44	Structural investigation of β-lactoglobulin gelation in ethanol/water solutions. International Journal of Biological Macromolecules, 1999, 26, 35-44.	7.5	41
45	Uniaxial Compression of Thermal Gels Based on Microfluidized Blends of WPI and Heat-Denatured WPI. Journal of Agricultural and Food Chemistry, 1999, 47, 1162-1167.	5.2	12
46	Structure and rheology of heat-set gels of globular proteins. Rheologica Acta, 1998, 37, 345-357.	2.4	41
47	"Ordered―structure in solutions and gels of a globular protein as studied by small angle neutron scattering. Biopolymers, 1998, 39, 149-159.	2.4	19
48	"Ordered―structure in solutions and gels of a globular protein as studied by small angle neutron scattering. Biopolymers, 1996, 39, 149-159.	2.4	17