Peter Donnelly

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2152867/peter-donnelly-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 44,583 59 34 h-index g-index citations papers 61 7.26 20.3 54,203 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
59	Altering the Binding Properties of PRDM9 Partially Restores Fertility across the Species Boundary. <i>Molecular Biology and Evolution</i> , 2021 , 38, 5555-5562	8.3	O
58	Platypus and echidna genomes reveal mammalian biology and evolution. <i>Nature</i> , 2021 , 592, 756-762	50.4	28
57	The Configuration of RPA, RAD51, and DMC1 Binding in Meiosis Reveals the Nature of Critical Recombination Intermediates. <i>Molecular Cell</i> , 2020 , 79, 689-701.e10	17.6	27
56	ZCWPW1 is recruited to recombination hotspots by PRDM9 and is essential for meiotic double strand break repair. <i>ELife</i> , 2020 , 9,	8.9	10
55	Patterns of genetic differentiation and the footprints of historical migrations in the Iberian Peninsula. <i>Nature Communications</i> , 2019 , 10, 551	17.4	34
54	Sequencing of human genomes with nanopore technology. <i>Nature Communications</i> , 2019 , 10, 1869	17.4	89
53	Factors influencing meiotic recombination revealed by whole-genome sequencing of single sperm. <i>Science</i> , 2019 , 363,	33.3	54
52	Insights into Platypus Population Structure and History from Whole-Genome Sequencing. <i>Molecular Biology and Evolution</i> , 2018 , 35, 1238-1252	8.3	15
51	Reply to "Comment on TNodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated T'. <i>Physical Review E</i> , 2018 , 98, 026302	2.4	2
50	The UK Biobank resource with deep phenotyping and genomic data. <i>Nature</i> , 2018 , 562, 203-209	50.4	2108
49	Identifying loci affecting trait variability and detecting interactions in genome-wide association studies. <i>Nature Genetics</i> , 2018 , 50, 1608-1614	36.3	34
48	Phenome-wide association studies across large population cohorts support drug target validation. <i>Nature Communications</i> , 2018 , 9, 4285	17.4	76
47	Long-read whole genome sequencing and comparative analysis of six strains of the human pathogen Orientia tsutsugamushi. <i>PLoS Neglected Tropical Diseases</i> , 2018 , 12, e0006566	4.8	18
46	A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. <i>Human Molecular Genetics</i> , 2017 , 26, 3869-38	8 5 .6	24
45	Bayesian analysis of genetic association across tree-structured routine healthcare data in the UK Biobank. <i>Nature Genetics</i> , 2017 , 49, 1311-1318	36.3	38
44	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. <i>Scientific Data</i> , 2017 , 4, 170179	8.2	22
43	Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. <i>Nature Communications</i> , 2016 , 7, 12724	17.4	94

(2014-2016)

42	Polymorphism in a lincRNA Associates with a Doubled Risk of Pneumococcal Bacteremia in Kenyan Children. <i>American Journal of Human Genetics</i> , 2016 , 98, 1092-1100	11	30
41	Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. <i>Nature</i> , 2016 , 530, 171-176	50.4	135
40	The genetic architecture of type 2 diabetes. <i>Nature</i> , 2016 , 536, 41-47	50.4	704
39	Reply to Pembrey et al: ZNF277 microdeletions, specific language impairment and the meiotic mismatch methylation (3M) hypothesisT <i>European Journal of Human Genetics</i> , 2015 , 23, 1113-5	5.3	2
38	Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. <i>Nature Genetics</i> , 2015 , 47, 717-726	36.3	244
37	The fine-scale genetic structure of the British population. <i>Nature</i> , 2015 , 519, 309-314	50.4	298
36	Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. <i>Science</i> , 2015 , 348, 666-9	33.3	170
35	Assessing allele-specific expression across multiple tissues from RNA-seq read data. <i>Bioinformatics</i> , 2015 , 31, 2497-504	7.2	48
34	A global reference for human genetic variation. <i>Nature</i> , 2015 , 526, 68-74	50.4	8599
33	Multicohort analysis of the maternal age effect on recombination. <i>Nature Communications</i> , 2015 , 6, 784	16 17.4	21
32	Class II HLA interactions modulate genetic risk for multiple sclerosis. <i>Nature Genetics</i> , 2015 , 47, 1107-11	1 133 6.3	215
31	Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. <i>Nature</i> , 2015 , 518, 102-6	50.4	463
30	Progress and promise in understanding the genetic basis of common diseases. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20151684	4.4	98
29	Where Next for Genetics and Genomics?. <i>PLoS Biology</i> , 2015 , 13, e1002216	9.7	8
28	Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. <i>Human Molecular Genetics</i> , 2014 , 23, 3200-11	5.6	179
27	The correlation between reading and mathematics ability at age twelve has a substantial genetic component. <i>Nature Communications</i> , 2014 , 5, 4204	17.4	54
26	Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. <i>European Journal of Human Genetics</i> , 2014 , 22, 1165-71	5.3	22
25	Recombination in the human Pseudoautosomal region PAR1. <i>PLoS Genetics</i> , 2014 , 10, e1004503	6	47

24	Choice of transcripts and software has a large effect on variant annotation. <i>Genome Medicine</i> , 2014 , 6, 26	14.4	125
23	Common variants in the HLA-DRB1-HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. <i>Nature Genetics</i> , 2013 , 45, 208-13	36.3	76
22	Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. <i>Nature Genetics</i> , 2013 , 45, 730-8	36.3	551
21	Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. <i>Nature Genetics</i> , 2012 , 44, 328-33	36.3	314
20	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. <i>Nature</i> , 2011 , 476, 214-9	50.4	1948
19	Genome-sequencing anniversary. Making sense of the data. <i>Science</i> , 2011 , 331, 1024-5	33.3	5
18	Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. <i>Science</i> , 2010 , 327, 876-9	33.3	465
17	A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. <i>PLoS Genetics</i> , 2009 , 5, e1000529	6	2866
16	Progress and challenges in genome-wide association studies in humans. <i>Nature</i> , 2008 , 456, 728-31	50.4	286
15	Genome-wide strategies for detecting multiple loci that influence complex diseases. <i>Nature Genetics</i> , 2005 , 37, 413-7	36.3	730
14	Appealing statistics. Significance, 2005, 2, 46-48	0.5	14
13	Reply to "Genomic Control to the extreme". <i>Nature Genetics</i> , 2004 , 36, 1131-1131	36.3	6
12	Likelihoods and simulation methods for a class of nonneutral population genetics models. <i>Genetics</i> , 2001 , 159, 853-67	4	28
11	Estimating recombination rates from population genetic data. <i>Genetics</i> , 2001 , 159, 1299-318	4	222
10	Microsatellite mutations and inferences about human demography. <i>Genetics</i> , 2000 , 154, 1793-807	4	27
9	Inference of population structure using multilocus genotype data. <i>Genetics</i> , 2000 , 155, 945-59	4	22315
8	Discussion: Recent Common Ancestors of all Present-Day Individuals. <i>Advances in Applied Probability</i> , 1999 , 31, 1027-1035	0.7	6
7	Discussion: Recent Common Ancestors of all Present-Day Individuals. <i>Advances in Applied Probability</i> , 1999 , 31, 1027-1035	0.7	7

LIST OF PUBLICATIONS

6	Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. <i>Genetics</i> , 1998 , 148, 1269-84	4	107
5	The coalescent process with selfing. <i>Genetics</i> , 1997 , 146, 1185-95	4	130
4	The correlation structure of epidemic models. <i>Mathematical Biosciences</i> , 1993 , 117, 49-75	3.9	16
3	ZCWPW1 is recruited to recombination hotspots by PRDM9, and is essential for meiotic double strand break repair		3
2	Genome-wide genetic data on ~500,000 UK Biobank participants		320
1	Patterns of genetic differentiation and the footprints of historical migrations in the Iberian Peninsula		4