Mohamed El-Sakhawy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2152381/publications.pdf

Version: 2024-02-01

54 papers

2,309 citations

257101 24 h-index 223531 46 g-index

54 all docs

54 docs citations

54 times ranked 2618 citing authors

#	Article	IF	Citations
1	Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydrate Polymers, 2020, 238, 116178.	5.1	559
2	Biomass pyrolysis: past, present, and future. Environment, Development and Sustainability, 2020, 22, 17-32.	2.7	218
3	Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. International Journal of Biological Macromolecules, 2015, 73, 72-75.	3.6	128
4	Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polymer Degradation and Stability, 2000, 70, 347-355.	2.7	119
5	Non-wood fibers as raw material for pulp and paper industry. Nordic Pulp and Paper Research Journal, 2020, 35, 215-230.	0.3	101
6	New chitosan/silica/zinc oxide nanocomposite as adsorbent for dye removal. International Journal of Biological Macromolecules, 2019, 131, 520-526.	3.6	99
7	Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. Journal of Applied Polymer Science, 2006, 100, 329-334.	1.3	85
8	Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application. Carbohydrate Polymers, 2014, 113, 500-506.	5.1	58
9	Carboxymethyl cellulose based hybrid material for sustained release of protein drugs. International Journal of Biological Macromolecules, 2016, 93, 1647-1652.	3.6	48
10	Structural and electrical properties of paper–polyaniline composite. Carbohydrate Polymers, 2012, 90, 1003-1007.	5.1	47
11	Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization. International Journal of Biological Macromolecules, 2016, 92, 920-925.	3.6	46
12	Carboxymethyl cellulose-hydrogel embedded with modified magnetite nanoparticles and porous carbon: Effective environmental adsorbent. Carbohydrate Polymers, 2020, 242, 116402.	5.1	43
13	Grafting of High α-Cellulose Pulp Extracted from Sunflower Stalks for Removal of Hg (II) from Aqueous Solution. Polymer-Plastics Technology and Engineering, 2006, 45, 135-141.	1.9	39
14	Carboxymethyl cellulose prepared from mesquite tree: New source for promising nanocomposite materials. Carbohydrate Polymers, 2018, 189, 138-144.	5.1	39
15	THERMAL PROPERTIES OF CARBOXYMETHYL CELLULOSE ACETATE BUTYRATE. Cellulose Chemistry and Technology, 2019, 53, 667-675.	0.5	39
16	Mechanical and electrical properties of paper sheets treated with chitosan and its derivatives. Carbohydrate Polymers, 2006, 63, 113-121.	5.1	38
17	Novel natural composite films as packaging materials with enhanced properties. International Journal of Biological Macromolecules, 2019, 136, 774-784.	3.6	38
18	Studies of Polylactic Acid and Metal Oxide Nanoparticles-Based Composites for Multifunctional Textile Prints. Coatings, 2020, 10, 58.	1.2	36

#	Article	IF	CITATIONS
19	TEMPO-oxidized cellulose nanofibers/polylactic acid/TiO2 as antibacterial bionanocomposite for active packaging. Egyptian Journal of Chemistry, 2017, 60, 4-8.	0.1	33
20	Bioactive cellulose grafted soy protein isolate towards biomimetic calcium phosphate mineralization. Industrial Crops and Products, 2017, 95, 170-174.	2.5	32
21	Carboxymethyl Cellulose-Grafted Graphene Oxide/Polyethylene Glycol for Efficient Ni(II) Adsorption. Journal of Polymers and the Environment, 2021, 29, 859-870.	2.4	31
22	Mechanical properties of the paper sheets treated with different polymers. Thermochimica Acta, 2004, 421, 81-85.	1.2	30
23	Carboxymethyl cellulose/silica hybrids as templates for calcium phosphate biomimetic mineralization. International Journal of Biological Macromolecules, 2015, 74, 155-161.	3.6	30
24	Potential use of bagasse and modified bagasse for removing of iron and phenol from water. Carbohydrate Polymers, 2012, 88, 250-256.	5.1	27
25	Rational design of novel water-soluble ampholytic cellulose derivatives. International Journal of Biological Macromolecules, 2018, 114, 363-372.	3.6	25
26	Aminated Hydroximoyl Camelthorn Residues as a Novel Adsorbent for Extracting Hg(II) From Contaminated Water: Studies of Isotherm, Kinetics, and Mechanism. Journal of Polymers and the Environment, 2020, 28, 2498-2510.	2.4	25
27	Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications. Journal of Drug Delivery, 2014, 2014, 1-6.	2.5	24
28	Nanocomposites from natural cellulose fibers incorporated with sucrose. Wood Science and Technology, 2006, 40, 77-86.	1.4	23
29	Multi-stage Bagasse pulping by using alkali/Caro's acid treatment. Industrial Crops and Products, 2005, 21, 337-341.	2.5	21
30	Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5â€fluorouracil. Biotechnology Journal, 2022, 17, e2100183.	1.8	19
31	New approach for immobilization of 3-aminopropyltrimethoxysilane and TiO2 nanoparticles into cellulose for BJ1 skin cells proliferation. Carbohydrate Polymers, 2018, 199, 193-204.	5.1	18
32	Preparation of eco-friendly graphene oxide from agricultural wastes for water treatment., 0, 191, 250-262.		18
33	Development of polymer composites and encapsulation technology for slow-release fertilizers. Reviews in Chemical Engineering, 2022, 38, 603-616.	2.3	17
34	Effect of bleaching sequence on paper ageing. Polymer Degradation and Stability, 2005, 87, 419-423.	2.7	14
35	Development of graphene oxide-based styrene/acrylic elastomeric disks from sugarcane bagasse as adsorbents of Nickel (II) ions. Journal of Polymer Research, 2022, 29, 1.	1.2	13
36	Mechanical properties and water absorption of lowâ€density polyethylene/sawdust composites. Journal of Applied Polymer Science, 2008, 107, 1337-1342.	1.3	12

#	Article	IF	Citations
37	Novel coating of bagasse paper sheets by gelatin and chitosan. Nordic Pulp and Paper Research Journal, 2014, 29, 741-746.	0.3	12
38	Calcium phosphate mineralization controlled by carboxymethyl cellulose-g-polymethacrylic acid. Soft Materials, 2016, 14, 154-161.	0.8	12
39	Enhancement of mechanical properties of chitosan film by doping with sage extract-loaded niosomes. Materials Research Express, 2022, 9, 035006.	0.8	12
40	Oxycellulose modification. Polymer International, 2000, 49, 839-844.	1.6	11
41	Facile methods for the preparation of micro- and mesoporous amorphous silica from rice husk. Biomass Conversion and Biorefinery, 2020, , $1.$	2.9	10
42	Characterization of Modified Oxycellulose. Magyar Apróvad Közlemények, 2001, 63, 549-558.	1.4	9
43	GRAPHENE OXIDE FUNCTIONALIZED BY ETHYLENE DIAMINE TETRAACETIC ACID (EDTA) BY A HYDROTHERMAL PROCESS AS AN ADSORBENT FOR NICKEL IONS. Cellulose Chemistry and Technology, 2021, 55, 417-432.	0.5	9
44	Physicomechanical Properties of Paper Treated With Polymers. Restaurator, 2000, 21, .	0.2	7
45	Thermal and natural aging of bagasse paper sheets coated with gelatin. Nordic Pulp and Paper Research Journal, 2018, 33, 327-335.	0.3	7
46	Improving the Antimicrobial Activity of Bagasse Packaging Paper using Organophosphorus Dimers. International Journal of Technology, 2016, 7, 932.	0.4	6
47	Polysaccharides/propolis composite as promising materials with biomedical and packaging applications: a review. Biomass Conversion and Biorefinery, 2024, 14, 4555-4565.	2.9	6
48	SUSTAINABLE CELLULOSE NANOCRYSTAL REINFORCED CHITOSAN/HPMC BIO-NANOCOMPOSITE FILMS CONTAINING MENTHOL OIL AS PACKAGING MATERIALS. Cellulose Chemistry and Technology, 2021, 55, 649-658.	0.5	3
49	Fire resistant bagasse paper as packaging material using 1,3-di-p-toluidine-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane with hydroxyethyl cellulose. Egyptian Journal of Petroleum, 2021, 30, 29-36.	1.2	3
50	Prevention of Hepatorenal Insufficiency Associated with Lead Exposure by Hibiscus sabdariffa L. Beverages Using In Vivo Assay. BioMed Research International, 2022, 2022, 1-12.	0.9	3
51	PREPARATION AND PROPERTIES OF NOVEL BIOCOMPATIBLE PECTIN/SILICA CALCIUM PHOSPHATE HYBRIDS. Cellulose Chemistry and Technology, 2022, 56, 371-378.	0.5	3
52	PREPARATION OF TEMPO-CELLULOSE NANOFIBER/ZINC OXIDE AS ANTIMICROBIAL AND METHYLENE BLUE PHOTO-DEGRADING NANOCOMPOSITE. Cellulose Chemistry and Technology, 2021, 55, 365-373.	0.5	2
53	Study on WSR-based community healthy food distribution design method. Food Science and Technology, 0, , .	0.8	2
54	OPTIMIZATION OF DITHIONITE BLEACHING OF HIGH YIELD BAGASSE PULP. Cellulose Chemistry and Technology, 2021, 55, 667-673.	0.5	0