Georgios Dimitriadis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2152307/publications.pdf

Version: 2024-02-01

361296 414303 1,521 32 20 32 citations g-index h-index papers 32 32 32 2612 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	13.7	601
2	Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3567-3582.	1.6	60
3	Final Moments. I. Precursor Emission, Envelope Inflation, and Enhanced Mass Loss Preceding the Luminous Type II Supernova 2020tlf. Astrophysical Journal, 2022, 924, 15.	1.6	59
4	The Young Supernova Experiment: Survey Goals, Overview, and Operations. Astrophysical Journal, 2021, 908, 143.	1.6	52
5	Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nature Astronomy, 2017, 1, 713-720.	4.2	48
6	A cool and inflated progenitor candidate for the Type Ib supernova 2019yvr at 2.6Âyr before explosion. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2073-2093.	1.6	48
7	SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features. Astrophysical Journal, 2020, 898, 166.	1.6	48
8	The late-time light curve of the Type Ia supernova SN 2011fe. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3798-3812.	1.6	42
9	The Rise and Fall of ASASSN-18pg: Following a TDE from Early to Late Times. Astrophysical Journal, 2020, 898, 161.	1.6	41
10	SALT3: An Improved Type Ia Supernova Model for Measuring Cosmic Distances. Astrophysical Journal, 2021, 923, 265.	1.6	40
11	A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 827, L40.	3.0	38
12	Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event. Astrophysical Journal, 2019, 879, 119.	1.6	38
13	Double-peaked Balmer Emission Indicating Prompt Accretion Disk Formation in an X-Ray Faint Tidal Disruption Event. Astrophysical Journal, 2020, 903, 31.	1.6	37
14	To TDE or not to TDE: the luminous transient ASASSN-18jd with TDE-like and AGN-like qualities. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2538-2560.	1.6	34
15	The volumetric rate of normal type la supernovae in the local Universe discovered by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2308-2320.	1.6	30
16	Nebular Spectroscopy of Kepler's Brightest Supernova. Astrophysical Journal Letters, 2019, 870, L14.	3.0	28
17	Strong Calcium Emission Indicates that the Ultraviolet-flashing SN Ia 2019yvq Was the Result of a Sub-Chandrasekar-mass Double-detonation Explosion. Astrophysical Journal Letters, 2020, 900, L27.	3.0	28
18	The Early Phases of Supernova 2020pni: Shock Ionization of the Nitrogen-enriched Circumstellar Material. Astrophysical Journal, 2022, 926, 20.	1.6	27

#	Article	IF	Citations
19	Type II supernovae in low-luminosity host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3232-3253.	1.6	26
20	An Early-time Optical and Ultraviolet Excess in the Type-Ic SN 2020oi. Astrophysical Journal, 2022, 924, 55.	1.6	22
21	Constraining Type la Supernova Progenitor Scenarios with Extremely Late-time Photometry of Supernova SN 2013aa. Astrophysical Journal, 2018, 857, 88.	1.6	21
22	Detection of circumstellar helium in Type lax progenitor systems. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2538-2577.	1.6	20
23	Ca hnk: The Calcium-rich Transient Supernova 2016hnk from a Helium Shell Detonation of a Sub-Chandrasekhar White Dwarf. Astrophysical Journal, 2020, 896, 165.	1.6	19
24	The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star–Black Hole Merger GW190814. Astrophysical Journal, 2021, 923, 258.	1.6	19
25	Discovery of a Fast Iron Low-ionization Outflow in the Early Evolution of the Nearby Tidal Disruption Event AT 2019qiz. Astrophysical Journal, 2021, 917, 9.	1.6	17
26	Modelling the cometary structure of the planetary nebula HFG1 based on the evolution of its binary central star V664 Cas. Monthly Notices of the Royal Astronomical Society, 2016, 457, 9-23.	1.6	15
27	A Carbon/Oxygen-dominated Atmosphere Days after Explosion for the "Super-Chandrasekhar―Type Ia SN 2020esm. Astrophysical Journal, 2022, 927, 78.	1.6	15
28	SN 2019muj $\hat{a} \in \hat{a}$ a well-observed Type lax supernova that bridges the luminosity gap of the class. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1078-1099.	1.6	14
29	Early X-ray emission from Type Ia supernovae originating from symbiotic progenitors or recurrent novae. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1370-1380.	1.6	12
30	SN 2018agk: A Prototypical Type Ia Supernova with a Smooth Power-law Rise in Kepler (K2). Astrophysical Journal, 2021, 923, 167.	1.6	10
31	X-ray limits on the progenitor system of the Type Ia supernova 2017ejb. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4123-4132.	1.6	9
32	Wolf 1465: Not a Bright Dwarf Carbon Star. Research Notes of the AAS, 2018, 2, 43.	0.3	3