Fangzhi Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2152253/publications.pdf Version: 2024-02-01

EANCZHI HU

#	Article	IF	CITATIONS
1	Redox-triggered dearomative [5 + 1] annulation of indoles with <i>O</i> -alkyl <i>ortho</i> -oxybenzaldehydes for the synthesis of spirochromanes. Organic Chemistry Frontiers, 2022, 9, 1668-1674.	2.3	20
2	Divergent Synthesis of [3,4]-Fused 3-Alkenyl-Oxindoles via Propargyl Alcohol-Triggered C(sp ³)–H Functionalization. ACS Catalysis, 2022, 12, 943-952.	5.5	38
3	HFIP-mediated three-component imidization of electron-rich arenes with <i>in situ</i> formed spiroindolenines for facile construction of 2-arylspiroindolenines. Organic Chemistry Frontiers, 2022, 9, 1696-1702.	2.3	15
4	Redox-Triggered Switchable Synthesis of 3,4-Dihydroquinolin-2(1 <i>H</i>)-one Derivatives via Hydride Transfer/ <i>N</i> -Dealkylation/ <i>N</i> -Acylation. Organic Letters, 2021, 23, 358-364.	2.4	34
5	Diverse Application of 4-Hydroxycoumarin in the Syntheses of Tetrahydroquinoline and Zwitterionic Biscoumarin Derivatives. Chinese Journal of Organic Chemistry, 2021, 41, 2788.	0.6	3
6	Divergent α-functionalization of cyclic amines <i>via</i> ring construction by molecular O ₂ oxidized dearomatization and ring deconstruction by aromatization-driven C–C σ-bond cleavage. Green Chemistry, 2021, 23, 5535-5541.	4.6	13
7	Aromatization-driven deconstruction/refunctionalization of unstrained rings. Organic Chemistry Frontiers, 2020, 7, 1570-1575.	2.3	11
8	Hydrogen-bonding-assisted redox-neutral construction of tetrahydroquinolines via hydride transfer. Organic and Biomolecular Chemistry, 2020, 18, 4267-4271.	1.5	14
9	Aromatization-Driven Cascade [1,5]-Hydride Transfer/Spirocyclization Promoted by Fluorinated Alcohols. Journal of Organic Chemistry, 2019, 84, 1833-1844.	1.7	59
10	Construction of Novel Tetrahydroâ€ <i>β</i> â€carbolineâ€1â€thione Spirooxindoles by BrÃ,nsted Acid Mediated Formal [3+3] Cyclization of 3â€Indolylmethanols with 3â€Isothiocyanato Oxindoles. Journal of Heterocyclic Chemistry, 2017, 54, 1311-1317.	1.4	6
11	Catalystâ€free Synthesis of Spiro[indolineâ€3,1′â€pyrazolo[5,1â€a]isoquinolines] <i>via</i> Diastereoselective 1,3â€dipolar Cycloaddition under Mild Conditions. Journal of Heterocyclic Chemistry, 2017, 54, 2922-2928.	e 1.4	12
12	Highly enantioselective [3+2] coupling of cyclic enamides with quinone monoimines promoted by a chiral phosphoric acid. Chemical Communications, 2016, 52, 8757-8760.	2.2	27
13	Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor. Sensors, 2015, 15, 10723-10733.	2.1	10