Shansheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2152048/publications.pdf Version: 2024-02-01

SHANSHENC YU

#	Article	IF	CITATIONS
1	Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 2019, 10, 5231.	5.8	371
2	Formation Mechanism of \hat{l}^2 -Phase in PVDF/CNT Composite Prepared by the Sonication Method. Macromolecules, 2009, 42, 8870-8874.	2.2	300
3	Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale, 2010, 2, 1069.	2.8	149
4	Decoration of the inert basal plane of defect-rich MoS ₂ with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A, 2016, 4, 4025-4031.	5.2	122
5	Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2. Nano-Micro Letters, 2019, 11, 102.	14.4	114
6	Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 18008-18014.	4.0	111
7	Insight into the role of Ni–Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride. Journal of Materials Chemistry A, 2019, 7, 14001-14010.	5.2	97
8	Nitrogen/Boron Doping Position Dependence of the Electronic Properties of a Triangular Graphene. ACS Nano, 2010, 4, 7619-7629.	7.3	86
9	Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. Journal of Materials Chemistry A, 2018, 6, 8531-8536.	5.2	70
10	Coulomb Repulsion at the Nanometer-Sized Contact: A Force Driving Superhydrophobicity, Superfluidity, Superlubricity, and Supersolidity. Journal of Physical Chemistry C, 2009, 113, 20009-20019.	1.5	67
11	Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles. ACS Nano, 2019, 13, 12987-12995.	7.3	67
12	Molybdenum disulfide loading on a Z-scheme graphitic carbon nitride and lanthanum nickelate heterojunction for enhanced photocatalysis: Interfacial charge transfer and mechanistic insights. Journal of Colloid and Interface Science, 2022, 611, 684-694.	5.0	55
13	Improving Photocatalytic Performance from Bi2WO6@MoS2/graphene Hybrids via Gradual Charge Transferred Pathway. Scientific Reports, 2017, 7, 3637.	1.6	53
14	Solid phase microwave-assisted fabrication of Fe-doped ZIF-8 for single-atom Fe-N-C electrocatalysts on oxygen reduction. Journal of Energy Chemistry, 2021, 54, 579-586.	7.1	52
15	Electronic Properties of Nitrogen-/Boron-Doped Graphene Nanoribbons With Armchair Edges. IEEE Nanotechnology Magazine, 2010, 9, 78-81.	1.1	46
16	Unlock the potential of Li4Ti5O12 for high-voltage/long-cycling-life and high-safety batteries: Dual-ion architecture superior to lithium-ion storage. Journal of Energy Chemistry, 2020, 44, 13-18.	7.1	46
17	Pd-loaded SnO2 ultrathin nanorod-assembled hollow microspheres with the significant improvement for toluene detection. Sensors and Actuators B: Chemical, 2017, 243, 465-474.	4.0	42
18	Enhanced toluene sensing performances of Pd- loaded SnO2 cubic nanocages with porous nanoparticle-assembled shells. Sensors and Actuators B: Chemical, 2017, 241, 1121-1129.	4.0	42

SHANSHENG YU

#	Article	IF	CITATIONS
19	Photovoltaic properties of graphene oxide sheets beaded with ZnO nanoparticles. Journal of Solid State Chemistry, 2011, 184, 881-887.	1.4	39
20	Heterostructured Ag/g ₃ N ₄ /TiO ₂ with enhanced visible light photocatalytic performances. Journal of Chemical Technology and Biotechnology, 2019, 94, 3806-3814.	1.6	38
21	Theoretical insight into the hydrogen adsorption on MoS2 (MoSe2) monolayer as a function of biaxial strain/external electric field. Applied Surface Science, 2019, 478, 857-865.	3.1	38
22	Highly Conductive Amorphous Pentlandite Anchored with Ultrafine Platinum Nanoparticles for Efficient pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2105372.	7.8	33
23	Multistep synthesis of non-spherical SnO 2 @SnO 2 yolk-shell cuboctahedra with nanoparticle-assembled porous structure for toluene detection. Sensors and Actuators B: Chemical, 2016, 231, 365-375.	4.0	32
24	Suppressing the Pd-C interaction through B-doping for highly efficient oxygen reduction. Carbon, 2019, 149, 370-379.	5.4	32
25	The mechanism and activity of oxygen reduction reaction on single atom doped graphene: a DFT method. RSC Advances, 2019, 9, 7086-7093.	1.7	31
26	Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site. Applied Catalysis B: Environmental, 2022, 309, 121290.	10.8	26
27	Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbonâ€Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds. ChemElectroChem, 2017, 4, 1269-1273.	1.7	24
28	The catalytic activity and mechanism of oxygen reduction reaction on P-doped MoS ₂ . Physical Chemistry Chemical Physics, 2018, 20, 18184-18191.	1.3	22
29	Precise mono-Cu ⁺ ion doping enhanced electrogenerated chemiluminescence from Cd–In–S supertetrahedral chalcogenide nanoclusters for dopamine detection. Nanoscale, 2018, 10, 15932-15937.	2.8	22
30	Structural Evolution of a PtRh Nanodendrite Electrocatalyst and Its Ultrahigh Durability toward Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 3302-3308.	5.5	21
31	Stability of Pt near surface alloys under electrochemical conditions: a model study. Physical Chemistry Chemical Physics, 2014, 16, 16615-16622.	1.3	20
32	TM atoms on B/N doped defective graphene as a catalyst for oxygen reduction reaction: a theoretical study. RSC Advances, 2015, 5, 82804-82812.	1.7	18
33	R6G molecule induced modulation of the optical properties of reduced graphene oxide nanosheets for use in ultrasensitive SPR sensing. Scientific Reports, 2016, 6, 21254.	1.6	17
34	Nature of Substitutional Impurity Atom B/N in Zigzag Single-Wall Carbon Nanotubes Revealed by First-Principle Calculations. IEEE Nanotechnology Magazine, 2006, 5, 595-598.	1.1	16
35	Electronic Properties of Nitrogen-Atom-Adsorbed Graphene Nanoribbons With Armchair Edges. IEEE Nanotechnology Magazine, 2010, 9, 243-247.	1.1	16
36	Fundamental insights into the electronic structure of zigzag MoS ₂ nanoribbons. Physical Chemistry Chemical Physics, 2016, 18, 4675-4683.	1.3	16

SHANSHENG YU

#	Article	IF	CITATIONS
37	Anti-Site Defects-Assisted Enhancement of Electrogenerated Chemiluminescence from in Situ Mn ²⁺ -Doped Supertetrahedral Chalcogenide Nanoclusters. ACS Applied Materials & Interfaces, 2018, 10, 38223-38229.	4.0	16
38	Substituent Effect of Imidazolium Ionic Liquid: A Potential Strategy for High Coulombic Efficiency Al Battery. Journal of Physical Chemistry C, 2019, 123, 11522-11528.	1.5	16
39	Oxidation of Graphene Nanoribbon by Molecular Oxygen. IEEE Nanotechnology Magazine, 2008, 7, 628-635.	1.1	15
40	Field-Emission Mechanism of Island-Shaped Graphene–BN Nanocomposite. Journal of Physical Chemistry C, 2011, 115, 9471-9476.	1.5	15
41	Two-dimensional π-conjugated metal bis(dithiolene) nanosheet: A promising anchoring material for lithium-sulfur batteries. Computational Materials Science, 2020, 171, 109228.	1.4	15
42	Electronic and Field Emission Properties of Carbon Nanocones: A Density Functional Theory Investigation. IEEE Nanotechnology Magazine, 2009, 8, 153-158.	1.1	14
43	Mechanical and electronâ€ŧransport properties of graphene nanoribbons under tensile strain: A firstâ€principles study. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2328-2331.	0.8	14
44	Metal distribution in iron-nickel sulfide mineral pentlandite: First-principles study. Chemical Physics Letters, 2019, 736, 136786.	1.2	14
45	Fe–N–C with Intensified Exposure of Active Sites for Highly Efficient and Stable Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 16279-16288.	4.0	14
46	Interaction of Rhodamine 6G molecules with graphene: a combined computational–experimental study. Physical Chemistry Chemical Physics, 2016, 18, 28418-28427.	1.3	13
47	Synergistic effect of S-bridged Fe-Ni group on hydrogen evolution for pentlandite. Journal of Colloid and Interface Science, 2021, 593, 116-124.	5.0	13
48	Theoretical insight into surface structures of pentlandite toward hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 645-654.	5.0	13
49	Theoretical investigation on different effects of nitrogen and boron substitutional impurities on the structures and field emission properties for carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 890-893.	1.3	12
50	Theoretical study of the strain effect on the oxygen reduction reaction activity and stability of FeNC catalyst. New Journal of Chemistry, 2020, 44, 6818-6824.	1.4	12
51	Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells. Journal of Chemical Physics, 2015, 142, 194710.	1.2	11
52	Electron spin resonance analysis of magnetic structures in La2/3Ca1/3MnO3. Journal of Magnetism and Magnetic Materials, 2005, 293, 782-786.	1.0	10
53	Free-Standing Single-Molecule Thick Crystals Consisting of Linear Long-Chain Polymers. Nano Letters, 2017, 17, 1655-1659.	4.5	10
54	A coupling effects of vacancy and Al (Ga, In) dopant on electronic structures of hexagonal boron nitride monolayer. Materials Research Express, 2017, 4, 116302.	0.8	9

SHANSHENG YU

#	Article	IF	CITATIONS
55	Doping MoS2 monolayer with nonmetal atoms to tune its electronic and magnetic properties, and chemical activity: a computational study. New Journal of Chemistry, 2019, 43, 5766-5772.	1.4	9
56	Crystal structures and magnetic properties of Fe–N thin films deposited by dc magnetron sputtering. Powder Diffraction, 2004, 19, 352-355.	0.4	7
57	First-principles investigations on the adsorption and diffusion of carbon atoms on the surface and in the subsurface of Co (111) related to the growth of graphene. RSC Advances, 2014, 4, 34237.	1.7	7
58	Electronic and magnetic properties of nitrogen-doped graphene nanoribbons with grain boundary. RSC Advances, 2014, 4, 1503-1511.	1.7	7
59	Enhanced Stability of Pt _{ML} /M _{ML} /WC(0001) Multilayer Alloys under Electrochemical Conditions: A First Principle Study. ACS Applied Materials & Interfaces, 2018, 10, 15704-15711.	4.0	7
60	First-principles calculations on the structure and electronic properties of boron doping zigzag single-walled carbon nanotubes. Science in China Series D: Earth Sciences, 2009, 52, 1219-1224.	0.9	6
61	Facile Preparation of VO ₂ Films with Enhanced Luminous Transmittance and Infrared Modulation Ability. ACS Applied Electronic Materials, 2021, 3, 4793-4802.	2.0	6
62	Effect of an external electric field, aqueous solution and specific adsorption on segregation of Pt _{ML} /M _{ML} /Pt(111) (M = Cu, Pd, Au): a DFT study. Physical Chemistry Chemical Physics, 2021, 23, 1584-1589.	1.3	5
63	Confinement of massless Dirac fermions in the graphene matrix induced by the B/N heteroatoms. Physical Chemistry Chemical Physics, 2015, 17, 5586-5593.	1.3	4
64	Doping Cu Atoms Excel as the Functional Material to Tune the Wettability for TMeNs Hard Coating. Advanced Materials Interfaces, 2018, 5, 1800391.	1.9	4
65	Electronic properties of a patchwork of armchair graphene nanoribbon and triangular boron nitride nanoflake. Molecular Simulation, 2013, 39, 487-494.	0.9	3
66	Iron, Copper and Nitrogen Coâ€doped Carbon with Enhanced Electrocatalytic Activity towards Oxygen Reduction. ChemElectroChem, 2020, 7, 3116-3122.	1.7	3
67	Physical Insight Into Substitutional N-Doped Graphene Nanoribbons With Armchair Edges. IEEE Nanotechnology Magazine, 2011, 10, 926-930.	1.1	2
68	Exploration of Defect Structures on Graphene. Journal of Nanoscience and Nanotechnology, 2013, 13, 1030-1034.	0.9	2
69	Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring the Chaotic Bonds. ChemElectroChem, 2017, 4, 1268-1268.	1.7	2
70	Nature of substitutional impurity atom B/N in zigzag single-wall carbon nanotubes revealed by first principle calculations. , 0, , .		1
71	Mechanical and electron transport properties of graphene nanoribbons under tensile strain: A first-principle study. , 2010, , .		0
72	Two-dimensional polyaniline nanosheets via liquid-phase exfoliation. Chinese Physics B, 2017, 26, 048102.	0.7	0