Travis T Wager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2151795/publications.pdf

Version: 2024-02-01

40 papers

4,329 citations

28
h-index

289244 40 g-index

40 all docs

40 docs citations

times ranked

40

5444 citing authors

#	Article	IF	CITATIONS
1	Harnessing Preclinical Data as a Predictive Tool for Human Brain Tissue Targeting. ACS Chemical Neuroscience, 2021, 12, 1007-1017.	3.5	6
2	Design, Optimization, and Study of Small Molecules That Target Tau Pre-mRNA and Affect Splicing. Journal of the American Chemical Society, 2020, 142, 8706-8727.	13.7	39
3	A perspective on the physicochemical and biopharmaceutic properties of marketed antiseizure drugs—From phenobarbital to cenobamate and beyond. Epilepsia, 2020, 61, 1543-1552.	5.1	26
4	Systems approach reveals photosensitivity and <scp>PER</scp> 2 level as determinants of clockâ€modulator efficacy. Molecular Systems Biology, 2019, 15, e8838.	7.2	29
5	In Vitro–In Vivo Extrapolation of Key Transporter Activity at the Blood–Brain Barrier. Drug Metabolism and Disposition, 2019, 47, 405-411.	3.3	32
6	Validation of Human MDR1-MDCK and BCRP-MDCK Cell Lines to Improve the Prediction of Brain Penetration. Journal of Pharmaceutical Sciences, 2019, 108, 2476-2483.	3.3	46
7	Late-Stage Microsomal Oxidation Reduces Drug–Drug Interaction and Identifies Phosphodiesterase 2A Inhibitor PF-06815189. ACS Medicinal Chemistry Letters, 2018, 9, 68-72.	2.8	31
8	Identification and Profiling of a Selective and Brain Penetrant Radioligand for in Vivo Target Occupancy Measurement of Casein Kinase 1 (CK1) Inhibitors. ACS Chemical Neuroscience, 2017, 8, 1995-2004.	3.5	21
9	Dopamine D3/D2 Receptor Antagonist PF-4363467 Attenuates Opioid Drug-Seeking Behavior without Concomitant D2 Side Effects. ACS Chemical Neuroscience, 2017, 8, 165-177.	3.5	17
10	Quantitative Assessment of the Impact of Fluorine Substitution on P-Glycoprotein (P-gp) Mediated Efflux, Permeability, Lipophilicity, and Metabolic Stability. Journal of Medicinal Chemistry, 2016, 59, 5284-5296.	6.4	57
11	Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery. ACS Chemical Neuroscience, 2016, 7, 767-775.	3.5	338
12	Discovery and Preclinical Profiling of 3-[4-(Morpholin-4-yl)-7 <i>H</i> -pyrrolo[2,3- <i>d</i>]pyrimidin-5-yl]benzonitrile (PF-06447475), a Highly Potent, Selective, Brain Penetrant, and in Vivo Active LRRK2 Kinase Inhibitor. Journal of Medicinal Chemistry, 2015, 58, 419-432.	6.4	147
13	Casein Kinase 1Πε Inhibitor PF-5006739 Attenuates Opioid Drug-Seeking Behavior. ACS Chemical Neuroscience, 2014, 5, 1253-1265.	3.5	29
14	Kinase domain inhibition of leucine rich repeat kinase 2 (LRRK2) using a [1,2,4]triazolo[4,3-b]pyridazine scaffold. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4132-4140.	2.2	26
15	A Novel Mechanism Controlling Resetting Speed of the Circadian Clock to Environmental Stimuli. Current Biology, 2014, 24, 766-773.	3.9	46
16	Ligand–Protein Interactions of Selective Casein Kinase 1δInhibitors. Journal of Medicinal Chemistry, 2013, 56, 6819-6828.	6.4	25
17	Improving the Odds of Success in Drug Discovery: Choosing the Best Compounds for in Vivo Toxicology Studies. Journal of Medicinal Chemistry, 2013, 56, 9771-9779.	6.4	41
18	Design and Selection Parameters to Accelerate the Discovery of Novel Central Nervous System Positron Emission Tomography (PET) Ligands and Their Application in the Development of a Novel Phosphodiesterase 2A PET Ligand. Journal of Medicinal Chemistry, 2013, 56, 4568-4579.	6.4	172

#	Article	IF	CITATIONS
19	Csnkle Is a Genetic Regulator of Sensitivity to Psychostimulants and Opioids. Neuropsychopharmacology, 2012, 37, 1026-1035.	5.4	60
20	Getting the MAX out of Computational Models: The Prediction of Unbound-Brain and Unbound-Plasma Maximum Concentrations. ACS Medicinal Chemistry Letters, 2012, 3, 515-519.	2.8	2
21	Strategies to minimize CNS toxicity: <i>in vitro </i> high-throughput assays and computational modeling. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 531-542.	3.3	33
22	Discovery of Two Clinical Histamine H ₃ Receptor Antagonists: <i>trans</i> - <i>N</i> -Ethyl-3-fluoro-3-[3-fluoro-4-(pyrrolidinylmethyl)phenyl]cyclobutanecarboxamide (PF-03654746) and <i>trans</i> -3-Fluoro-3-[3-fluoro-4-(pyrrolidin-1-ylmethyl)phenyl]- <i>N</i> -(2-methylpropyl)cyclobutanecarbox	6.4	80
23	(PF-03654764). Journal of Medicinal Chemistry, 2011, 54, 7602-7620. Central Modulation of Circadian Rhythm via CK1 Inhibition for Psychiatric Indications. Annual Reports in Medicinal Chemistry, 2011, 46, 33-51.	0.9	3
24	Strategies to optimize the brain availability of central nervous system drug candidates. Expert Opinion on Drug Discovery, 2011, 6, 371-381.	5.0	48
25	Moving beyond Rules: The Development of a Central Nervous System Multiparameter Optimization (CNS MPO) Approach To Enable Alignment of Druglike Properties. ACS Chemical Neuroscience, 2010, 1, 435-449.	3.5	763
26	Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15240-15245.	7.1	219
27	Defining Desirable Central Nervous System Drug Space through the Alignment of Molecular Properties, in Vitro ADME, and Safety Attributes. ACS Chemical Neuroscience, 2010, 1, 420-434.	3.5	381
28	Selective Inhibition of Casein Kinase $1\ddot{l}\mu$ Minimally Alters Circadian Clock Period. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 430-439.	2.5	157
29	Physicochemical drug properties associated with <i>in vivo</i> toxicological outcomes: a review. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 921-931.	3.3	131
30	Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4872-4875.	2.2	749
31	Glycogen Synthase Kinase-3 (GSK-3): A Kinase with Exceptional Therapeutic Potential. Annual Reports in Medicinal Chemistry, 2005, 40, 135-147.	0.9	3
32	A Direct and Mild Conversion of Tertiary Aryl Amides to Methyl Esters Using Trimethyloxonium Tetrafluoroborate: A Very Useful Complement to Directed Metalation Reactions. Tetrahedron, 2000, 56, 9875-9883.	1.9	48
33	Reductive cleavage of Nî—¸O bonds in hydroxylamines and hydroxamic acid derivatives using samarium diiodide. Tetrahedron, 1999, 55, 11755-11772.	1.9	104
34	An Especially Convenient Stereoselective Reduction of β-Hydroxy Ketones to Anti 1,3 Diols Using Samarium Diiodideâ€. Journal of Organic Chemistry, 1999, 64, 2172-2173.	3.2	81
35	Total Syntheses of (â^²)-Lycoricidine, (+)-Lycoricidine, and (+)-Narciclasine via 6-exoCyclizations of Substituted Vinyl Radicals with Oxime Ethersâ€. Journal of the American Chemical Society, 1999, 121, 5176-5190.	13.7	90
36	A Second-Generation Radical-Based Synthesis of (+)-7-Deoxypancratistatin. Journal of Organic Chemistry, 1998, 63, 9164-9165.	3.2	56

#	Article	IF	CITATION
37	Total Synthesis ofent-Lycoricidineviaa Thiyl Radical Additionâ^'Cyclization Sequenceâ€. Journal of Organic Chemistry, 1996, 61, 8366-8367.	3.2	65
38	Reductive cleavage of Nî—,O bonds in hydroxylamine and hydroxamic acid derivatives using Sml2/THF. Tetrahedron Letters, 1995, 36, 7419-7422.	1.4	120
39	The Scientist-in-Residence Program: A Chemistry-Based Outreach Initiative. Journal of Chemical Education, 1994, 71, 864.	2.3	4
40	Synthesis of (+)-(R)-6-Ethyl-2,3-dihydro-2-methyl-4 <i>H</i> pyran-4-one -Sex-Pheromone Component of the Male Swift Moth <i>Hepialus hecta</i>)L. Synthetic Communications, 1993, 23, 87-95.	2.1	4