
Raad Chegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2151644/publications.pdf Version: 2024-02-01

RAND CHECEL

#	Article	lF	CITATIONS
1	Tunable Electronic, Optical, and Thermal Properties of two- dimensional Germanene via an external electric field. Scientific Reports, 2020, 10, 704.	1.6	66
2	Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles. Physica B: Condensed Matter, 2008, 403, 3623-3626.	1.3	30
3	Heat capacity, electrical and thermal conductivity of silicene. European Physical Journal B, 2016, 89, 1.	0.6	24
4	Effects of carbon doping on the electronic properties of boron nitride nanotubes: Tight binding calculation. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 223-234.	1.3	22
5	The effects of electric field on electronic and thermal properties of bilayer boron phosphide: Beyond nearest neighbor approximation. Synthetic Metals, 2020, 266, 116476.	2.1	22
6	Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2260-2266.	0.9	21
7	Effects of an electric field on the electronic and optical properties of zigzag boron nitride nanotubes. Solid State Communications, 2011, 151, 259-263.	0.9	20
8	Electro-optical properties of zigzag and armchair boron nitride nanotubes under a transverse electric field: Tight binding calculations. Journal of Physics and Chemistry of Solids, 2012, 73, 154-161.	1.9	20
9	Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes. Superlattices and Microstructures, 2014, 73, 185-192.	1.4	20
10	Influence of bias on the electronic structure and electrical conductivity and heat capacity of graphene and boron nitride multilayers. Synthetic Metals, 2017, 223, 172-183.	2.1	19
11	Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	17
12	Engineering thermal and electrical properties of B/N doped carbon nanotubes: Tight binding approximation. Journal of Alloys and Compounds, 2019, 792, 721-731.	2.8	17
13	Tuning electronic properties of carbon nanotubes by Boron and Nitrogen doping. Physica B: Condensed Matter, 2016, 499, 1-16.	1.3	16
14	Ab initio density functional theory investigation of structural and electronic properties of double-walled silicon carbide nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42, 172-175.	1.3	15
15	Effects of electric and magnetic fields on the electronic properties of zigzag carbon and boron nitride nanotubes. Solid State Sciences, 2012, 14, 456-464.	1.5	15
16	Bandstructure modulation for Si-h and Si-g nanotubes in a transverse electric field: Tight binding approach. Superlattices and Microstructures, 2013, 63, 79-90.	1.4	14
17	Theoretical study of the influence of the electric field on the electronic properties of armchair boron nitride nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64, 158-164.	1.3	14
18	Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers. Physica B: Condensed Matter, 2017, 511, 26-35.	1.3	14

RAAD CHEGEL

#	Article	IF	CITATIONS
19	Effects of axial magnetic field on the electronic and optical properties of boron nitride nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1631-1637.	1.3	13
20	Third-Nearest-Neighbors Tight-Binding Description of Optical Response of Carbon Nanotubes: Effects of Chirality and Diameter. Journal of Electronic Materials, 2015, 44, 3500-3511.	1.0	12
21	Controlling electrical and thermoelectric properties of bilayer SiC by bias voltage. Solid State Sciences, 2021, 121, 106737.	1.5	12
22	Linear optical response of carbon nanotubes under axial magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1850-1860.	1.3	11
23	Investigation of magnetism in aluminum-doped silicon carbide nanotubes. Solid State Communications, 2013, 174, 38-42.	0.9	11
24	Enhanced electrical conductivity in graphene and boron nitride nanoribbons in large electric fields. Physica B: Condensed Matter, 2018, 531, 206-212.	1.3	11
25	Electronic Properties of SiNTs Under External Electric and Magnetic Fields Using the Tight-Binding Method. Journal of Electronic Materials, 2014, 43, 329-340.	1.0	10
26	Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 375, 174-179.	0.9	9
27	Ab initiodensity functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes. Journal of Physics Condensed Matter, 2008, 20, 465214.	0.7	8
28	Thermal conductivity, heat capacity and magnetic susceptibility of graphene and boron nitride nanoribbons. Diamond and Related Materials, 2018, 88, 101-109.	1.8	8
29	First-principles study of the band structure and optical spectra of germanium carbide under mechanical strain. Journal of Electron Spectroscopy and Related Phenomena, 2020, 242, 146969.	0.8	8
30	Controlling the thermoelectric behaviors of biased silicene via the magnetic field: Tight binding model. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 135, 114945.	1.3	8
31	Chirality dependence of dipole matrix element of carbon nanotubes in axial magnetic field: A third neighbor tight binding approach. Optics Communications, 2014, 313, 406-415.	1.0	7
32	Optical absorption of zigzag single walled boron nitride nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 312-318.	1.3	6
33	Linear Optical Response of Silicon Nanotubes Under Axial Magnetic Field. Journal of Electronic Materials, 2013, 42, 58-70.	1.0	6
34	BN-C Hybrid Nanoribbons as Gas Sensors. Journal of Electronic Materials, 2018, 47, 1009-1021.	1.0	6
35	Electronic and thermal properties of silicene nanoribbons: Third nearest neighbor tight binding approximation. Chemical Physics Letters, 2020, 761, 138061.	1.2	6
36	Tight binding theory of thermal conductivity of doped carbon nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113586.	1.3	5

RAAD CHEGEL

#	Article	IF	CITATIONS
37	Tuning temperature-dependent of thermal conductivity and heat capacity of two-dimensional GeC compared to Graphene and Germanene: Effects of magnetic field. Physica B: Condensed Matter, 2022, 638, 413921.	1.3	5
38	Electronic and transport properties of BCN alloy nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 177-183.	1.3	4
39	Electrical and optical conductivities of bilayer silicene: Tight-binding calculations. International Journal of Modern Physics B, 2017, 31, 1750158.	1.0	3
40	Improvement of thermal conductivity in carbon doped BNNTs by electric field. Journal of Molecular Graphics and Modelling, 2022, 116, 108259.	1.3	3
41	Structural and Electronic Properties of Silicon Carbide Nanotubes. Journal of Computational and Theoretical Nanoscience, 2012, 9, 1860-1869.	0.4	2
42	Magnetic Field-Induced Splitting of Optical Spectra in Silicon Nanotubes: Tight Binding Calculations. Silicon, 2016, 8, 43-55.	1.8	2
43	Thermoelectric performance of biased silicene nanoribbon in the presence of magnetic field. Superlattices and Microstructures, 2021, , 107143.	1.4	2
44	Optical absorption of zigzag single walled boron nitride nanotubes inÂaxial magnetic field. Solid State Sciences, 2013, 25, 70-77.	1.5	1
45	Tight-binding description of the silicon carbide nanotubes. Journal of Alloys and Compounds, 2017, 695, 540-548.	2.8	1
46	Thermal Conductivity and Heat Capacity of Silicene Nanotube Compared to Silicene Nanoribbon. Silicon, 0, , 1.	1.8	0