Edouard Asselin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2151517/publications.pdf

Version: 2024-02-01

331670 345221 1,937 119 21 citations h-index papers

g-index 123 123 123 1825 docs citations times ranked citing authors all docs

36

#	Article	IF	Citations
1	Microstructural, corrosion and mechanical properties of additively manufactured alloys: a review. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 46-98.	12.3	12
2	Antimicrobial efficacy and durability of copper formulations over one year of hospital use. Infection Control and Hospital Epidemiology, 2022, 43, 79-87.	1.8	6
3	Improving Surface Functionality, Hydrophilicity, and Interfacial Adhesion Properties of High-Density Polyethylene with Activated Peroxides. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3601-3609.	8.0	9
4	Corrosion evaluation of Ti–6Al–4V manufactured by electron beam melting in Ringer's physiological solution: an in vitro study of the passive film. Journal of Applied Electrochemistry, 2022, 52, 1003-1019.	2.9	16
5	Evaluating the antimicrobial activity of copper surfaces against Pseudomonas aeruginosa and Staphylococcus aureus 1 year after use in a microbiology laboratory. Journal of Hospital Infection, 2022, 123, 186-188.	2.9	2
6	Solubility and Modeling of Li ₂ SO ₄ ·H ₂ O in Aqueous H ₂ SO ₄ Solutions for Lithium Extraction from Spodumene. Journal of Chemical & Data, 2022, 67, 919-931.	1.9	2
7	A review on the electrocatalytic dissociation of water over stainless steel: Hydrogen and oxygen evolution reactions. Renewable and Sustainable Energy Reviews, 2022, 161, 112323.	16.4	20
8	A New Process for Peracetic Acid Production from Acetic Acid and Hydrogen Peroxide Based on Kinetic Modeling and Distillation Simulation. Industrial & Engineering Chemistry Research, 2022, 61, 339-348.	3.7	3
9	Water transport through epoxy-based powder pipeline coatings. Progress in Organic Coatings, 2022, 168, 106874.	3.9	7
10	Electron beam surface remelting enhanced corrosion resistance of additively manufactured Ti-6Al-4V as a potential in-situ re-finishing technique. Scientific Reports, 2022, 12, .	3.3	6
11	Passivity Breakdown of Copper in Borate Buffer Solutions Containing Clâ ⁻ , SO42â ⁻ , and NO3â ⁻ . Corrosion, 2022, 78, 865-875.	1.1	0
12	A process for beneficiation of low-grade manganese ore and synchronous preparation of calcium sulfate whiskers during hydrochloric acid regeneration. Hydrometallurgy, 2021, 199, 105533.	4.3	10
13	CaCO ₃ Precipitation Kinetics in the System CaCl ₂ –CO ₂ –Mg(OH) ₂ –H ₂ 0 for Comprehensive Utilization of Soda Production Wastes. ACS Sustainable Chemistry and Engineering, 2021, 9, 398-410.	6.7	4
14	Corrosion of cast iron pipelines buried in Fraser River silt subject to climate-induced moisture variations. Acta Geotechnica, 2021, 16, 873-884.	5.7	2
15	Three phase corrosion of pipeline steel: Size effects of deposited solids under water droplets and an oil diffusion barrier. Journal of Pipeline Science and Engineering, 2021, 1, 137-147.	4.8	6
16	Predicting the External Corrosion Rate of X60 Pipeline Steel: A Mathematical Model. Metals, 2021, 11, 583.	2.3	1
17	Fluoride induced corrosion of Ti-45Nb in sulfuric acid solutions. Corrosion Science, 2021, 181, 109232.	6.6	21
18	Chemical oxidation of <scp>highâ€density</scp> polyethylene: Surface energy, functionality, and adhesion to liquid epoxy. Journal of Applied Polymer Science, 2021, 138, 50999.	2.6	5

#	Article	IF	CITATIONS
19	A Critical Review of the Time-Dependent Performance of Polymeric Pipeline Coatings: Focus on Hydration of Epoxy-Based Coatings. Polymers, 2021, 13, 1517.	4.5	18
20	Critical pitting temperature of selective laser melted 316L stainless steel: A mechanistic approach. Corrosion Science, 2021, 185, 109302.	6.6	15
21	Thermo–Kinetic diagrams: The Cu–H2O–Acetate and the Cu-H2O systems. Journal of Electroanalytical Chemistry, 2021, 895, 115467.	3.8	11
22	General corrosion vulnerability assessment using a Bayesian belief network model incorporating experimental corrosion data for X60 pipe steel. Journal of Pipeline Science and Engineering, 2021 , 1 , $329-338$.	4.8	9
23	Ex Situ Examination of Matrix and Inclusions of API-X100 before and after Exposure to Bitumen at Elevated Temperature. Materials, 2021, 14, 5007.	2.9	2
24	Preparation of strontium carbonate via celestite leaching in NaHCO3 using two interconnected reactors. Hydrometallurgy, 2021, 204, 105729.	4.3	2
25	Corrosion of monometallic iron- and nickel-based electrocatalysts for the alkaline oxygen evolution reaction: A review. Journal of Power Sources, 2021, 510, 230387.	7.8	21
26	Method of developing Thermo–Kinetic diagrams: The Cu–H2O–acetate and the Cu-H2O systems. MethodsX, 2021, 8, 101539.	1.6	0
27	Microwave pretreatment for enhanced selective nitric acid pressure leaching of limonitic laterite. Journal of Central South University, 2021, 28, 3050-3060.	3.0	10
28	Leaching of Mercury from Contaminated Solid Waste: A Mini-Review. Mineral Processing and Extractive Metallurgy Review, 2020, 41, 187-197.	5.0	11
29	Integration of Cu extraction and Zn electrowinning processes for energy storage. Journal of Cleaner Production, 2020, 253, 119779.	9.3	4
30	Corrosion resistance of hot-dip galvanized steel in simulated soil solution: A factorial design and pit chemistry study. Corrosion Science, 2020, 164, 108310.	6.6	35
31	Charge Transport Characteristics of the Passive Oxide Film Formed on 3D Printed 316 L Stainless Steel in the Presence of Fe Fe Species. Journal of Physical Chemistry C, 2020, 124, 21435-21445.	3.1	6
32	Localised instability of titanium during its erosion-corrosion in simulated acidic hydrometallurgical slurries. Corrosion Science, 2020, 174, 108816.	6.6	10
33	Scanning electrochemical microscopy screening of CO2 electroreduction activities and product selectivities of catalyst arrays. Communications Chemistry, 2020, 3, .	4.5	28
34	Catalytic effect of ethylene thiourea on the leaching of chalcopyrite. Hydrometallurgy, 2020, 196, 105410.	4. 3	9
35	Evaluation of the cathodic disbondment resistance of pipeline coatings – A review. Progress in Organic Coatings, 2020, 146, 105728.	3.9	17
36	Controlling the dissolution of iron through the development of nanostructured Fe-Mg for biomedical applications. Acta Biomaterialia, 2020, 113, 660-676.	8.3	18

3

#	Article	IF	Citations
37	Fe(III) Precipitation and Copper Loss from Sulphate-Chloride Solutions at 150 \hat{A}° C: A Statistical Approach. Metals, 2020, 10, 669.	2.3	3
38	<i>In vitro</i> evaluation of antimicrobial efficacy and durability of three copper surfaces used in healthcare. Biointerphases, 2020, 15, 011005.	1.6	16
39	The Mineral Battery: Combining Metal Extraction and Energy Storage. Joule, 2020, 4, 4-9.	24.0	5
40	Electrodeposition of metallic molybdenum and its alloys – a review. Canadian Metallurgical Quarterly, 2019, 58, 1-18.	1.2	14
41	Aqueous Corrosion of Deformed Steel Under Simulated Diluted Bitumen. Corrosion, 2019, 75, 1194-1206.	1.1	2
42	Failure investigation of stainless steel anodes used in gold electrowinning. Engineering Failure Analysis, 2019, 106, 104183.	4.0	4
43	Effect of Fe(III) and Cu(II) on the Passivation of Ti-2 in Acidic Chloride Solutions. Journal of the Electrochemical Society, 2019, 166, C76-C82.	2.9	8
44	Electrochemical Investigation and Identification of Titanium Hydrides Formed in Mixed Chloride Sulfuric Acid Solution. Journal of the Electrochemical Society, 2019, 166, C3096-C3105.	2.9	11
45	The Effects of Chloride Droplet Properties on the Underoil Corrosion of API X100 Pipeline Steel. Corrosion, 2019, 75, 1051-1064.	1.1	2
46	On the use of a naturally-sourced CuFeS2 mineral concentrate for energy storage. Electrochimica Acta, 2019, 297, 1079-1093.	5.2	16
47	The dissolution kinetics and salt film precipitation of Zn and Fe in chloride solutions: Importance of the common-ion effect and diffusivity. Corrosion Science, 2019, 146, 152-162.	6.6	5
48	Electrosynthesis of metallic molybdenum from water deficient solution containing molybdate ions and high concentrations of acetate. Surface and Coatings Technology, 2019, 357, 567-574.	4.8	7
49	A Hybrid Mineral Battery: Energy Storage and Dissolution Behavior of CuFeS ₂ in a Fixed Bed Flow Cell. ChemSusChem, 2018, 11, 1533-1548.	6.8	14
50	Corrosion behaviour of X100 pipeline steel under a salty droplet covered by simulated diluted bitumen. Materials Letters, 2018, 222, 196-199.	2.6	10
51	Effect of retrogression and reâ€aging (RRA) heat treatment on the corrosion behavior of B206 aluminum–copper casting alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 998-1015.	1.5	7
52	A New Corrosion Mechanism for X100 Pipeline Steel Under Oil-Covered Chloride Droplets. Corrosion, 2018, 74, 947-957.	1.1	9
53	Kinetics of Passive Film Growth on 304 Stainless Steel in H2SO4 Pickling Solution under Chemical Oxidation. Corrosion, 2018, 74, 705-714.	1.1	7
54	Factors affecting hematite precipitation and characterization of the product from simulated sulphate-chloride solutions at 150 °C. Hydrometallurgy, 2018, 179, 8-19.	4.3	11

#	Article	IF	CITATIONS
55	Electrochemical dissolution of chalcopyrite in the presence of thiourea and formamidine disulfide. Hydrometallurgy, 2018, 179, 110-117.	4.3	9
56	Improved corrosion resistance of air plasma sprayed WC-12%Co cermet coating by laser re-melting process. Materials Letters, 2017, 191, 34-37.	2.6	28
57	FIB/SEM Study of Pitting and Intergranular Corrosion in an Al-Cu Alloy. Corrosion, 2017, 73, 927-941.	1.1	1
58	Effect of cysteine on the electrochemical dissolution of chalcopyrite. Hydrometallurgy, 2017, 169, 552-563.	4.3	7
59	On the refractory nature of precious metal tellurides. Hydrometallurgy, 2017, 169, 488-495.	4.3	11
60	Dissolution Kinetics of Pure Zinc: The Effect of Bulk Solution Concentration and Temperature Studied by the Lead-In Pencil Electrode Technique. Journal of the Electrochemical Society, 2017, 164, C758-C767.	2.9	6
61	Novel reagents for iron and sulphur control in medium temperature leaching of sulphide concentrates. Canadian Metallurgical Quarterly, 2017, 56, 382-392.	1.2	2
62	Electrodeposition of Aluminum onto Copper-Coated Printed Circuit Boards. Journal of the Electrochemical Society, 2017, 164, D729-D736.	2.9	1
63	Dependence of the Electrochemical and Passive Behavior of the Lead-Acid Battery Positive Grid on Electrode Surface Roughness. Corrosion, 2017, 73, 1359-1366.	1.1	4
64	Laboratory and Pilot Scale Studies of Potassium Extraction from K-feldspar Decomposition with CaCl ₂ and CaCO ₃ . Journal of Chemical Engineering of Japan, 2016, 49, 111-119.	0.6	23
65	Kinetic study of the dissolution of metallic nickel in sulphuric acid solutions in the presence of different oxidants. Canadian Journal of Chemical Engineering, 2016, 94, 1872-1879.	1.7	6
66	Extended validation of an expression to predict ORP and iron chemistry: Application to complex solutions generated during the acidic leaching or bioleaching of printed circuit boards. Hydrometallurgy, 2016, 164, 334-342.	4.3	18
67	Differentiation of the non-faradaic and pseudocapacitive electrochemical response of graphite felt/CuFeS2 composite electrodes. Electrochimica Acta, 2016, 212, 979-991.	5.2	26
68	Solubility Measurement and Chemical Modeling of MgSO ₄ ·7H ₂ O in the Ti(SO ₄) ₂ â€"H ₂ SO ₄ â€"H ₂ O System. Journal of Chemical & Data, 2016, 61, 2363-2370.	1.9	5
69	Long-term Hot Corrosion Behavior of Boiler Tube Alloys in Waste-to-Energy Plants. Oxidation of Metals, 2016, 86, 135-149.	2.1	10
70	Etching Induced Stepped Nanostructure on Pb(Mg _(1â€"<i>x</i>/2) W _{1/2})O ₃ Ceramics. Journal of the American Ceramic Society, 2016, 99, 1125-1128.	3.8	4
71	Amorphous iron phases in medium temperature leach residues and associated metal loss. International Journal of Mineral Processing, 2016, 148, 65-71.	2.6	4
72	Turning Bulk Titanium into Rutile Nanorods in One Step: Synthesis, Mechanism, and Application. Crystal Growth and Design, 2016, 16, 1583-1590.	3.0	1

#	Article	IF	CITATIONS
73	Atmospheric ferric sulfate leaching of chalcopyrite: Thermodynamics, kinetics and electrochemistry. Hydrometallurgy, 2016, 165, 148-158.	4.3	38
74	Copper and Cyanide Extraction with Emulsion Liquid Membrane with LIX 7950 as the Mobile Carrier: Part 1, Emulsion Stability. Metals, 2015, 5, 2034-2047.	2.3	16
75	Particle concentration distribution measurements in stirred tanks using a new experimental technique: time and frequency domain analyses. Canadian Metallurgical Quarterly, 2015, 54, 289-296.	1.2	O
76	The Anodic Passivity of Titanium in Mixed Sulfate-Chloride Solutions. Journal of the Electrochemical Society, 2015, 162, E289-E295.	2.9	15
77	A new method to improve the corrosion resistance of titanium for hydrometallurgical applications. Applied Surface Science, 2015, 332, 480-487.	6.1	20
78	Effects of Temperature and Sulfate on the Pitting Corrosion of Titanium in High-Temperature Chloride Solutions. Journal of the Electrochemical Society, 2015, 162, C189-C196.	2.9	21
79	Modeling Phase Equilibria for the Glycine–NH ₄ Cl–Methanol–Water System and Its Application for the Industrial Monochloroacetic Acid Process. Industrial & Description (2015), 54, 3488-3497.	3.7	7
80	High Temperature Corrosion of Titanium Under Conditions Relevant to Pressure Leaching: Mass Loss and Electrochemistry. Corrosion, 2015, 71, 352-366.	1.1	7
81	Influence of Cupric, Ferric, and Chloride on the Corrosion of Titanium in Sulfuric Acid Solutions Up to 85°C. Corrosion, 2014, 70, 29-37.	1.1	30
82	Electrochemical dissolution of fresh and passivated chalcopyrite electrodes. Effect of pyrite on the reduction of Fe3+ ions and transport processes within the passive film. Electrochimica Acta, 2014, 127, 7-19.	5.2	36
83	Potentiometric titration of hematite and magnetite at elevated temperatures using a ZrO2-based pH probe. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 144-152.	4.7	11
84	Vapor–Liquid Equilibria for the ZnSO4–H2SO4–H2O and MgSO4–H2SO4–H2O Systems at (30, 60,	90,) ₁ .j etc)q0 ₅ 0 0 rgBT /
85	Process Simulation of Sulfuric Acid Recovery by Azeotropic Distillation: Vapor–Liquid Equilibria and Thermodynamic Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 11794-11804.	3.7	8
86	Kinetics of Ferric Ion Reduction on Chalcopyrite and its Influence on Leaching up to 150 ${\hat A}^{\circ}$ C. Electrochimica Acta, 2014, 146, 307-321.	5.2	28
87	Leaching kinetics of enargite in alkaline sodium sulphide solutions. Hydrometallurgy, 2014, 146, 48-58.	4.3	29
88	A novel separation process for detoxifying cadmium-containing residues from zinc purification plants. Minerals Engineering, 2014, 64, 1-6.	4.3	12
89	Characterization of anodized titanium for hydrometallurgical applications—Evidence for the reduction of cupric on titanium dioxide. Applied Surface Science, 2013, 283, 705-714.	6.1	9
90	Electrochemical study of the dissolution of enargite (Cu3AsS4) in contact with activated carbon. Electrochimica Acta, 2013, 107, 525-536.	5.2	10

#	Article	IF	Citations
91	Solubility of AlCl $<$ sub $>$ 3 $<$ /sub $>$ Â \cdot 6H $<$ sub $>$ 2 $<$ /sub $>$ O in the Fe(II) + Mg + Ca + K + Cl + H $<$ sub $>$ 2 $<$ /sub $>$ O System and Its Salting-Out Crystallization with FeCl $<$ sub $>$ 2 $<$ /sub $>$. Industrial & Engineering Chemistry Research, 2013, 52, 14282-14290.	3.7	13
92	Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochimica Acta, 2013, 87, 97-112.	5.2	258
93	Electrochemical detection of corrosion product fouling in high temperature and high pressure solution. Electrochimica Acta, 2013, 100, 101-109.	5.2	12
94	Determination and Modeling of Vapor–Liquid Equilibria for the Sulfuric Acid + Water + Butyl Acetate + Ethanol System. Industrial & Determination and Modeling of Vapor–Liquid Equilibria for the Sulfuric Acid + Water + Butyl Acetate + Ethanol System. Industrial & Determination and Modeling of Vapor–Liquid Equilibria for the Sulfuric Acid + Water + Butyl Acetate + Ethanol System. Industrial & Determination and Modeling of Vapor–Liquid Equilibria for the Sulfuric Acid + Water + Butyl Acetate + Ethanol System. Industrial & Determination and Modeling of Vapor–Liquid Equilibria for the Sulfuric Acid + Water + Butyl Acetate + Ethanol System. Industrial & Determination and Modeling of Vapor–Liquid Equilibria for the Sulfuric Acid + Water + Butyl Acetate + Ethanol System. Industrial & Determination and Modeling of Vapor—Liquid Equilibria for the Sulfuric Acid + Water + Butyl Acetate + Ethanol System. Industrial & Determination and Determination an	3.7	17
95	Use of EIS to Measure the Rate of H2O2Decomposition on a Bulk Magnetite Electrode in Alkaline Solution. Journal of the Electrochemical Society, 2012, 159, B831-B838.	2.9	7
96	Electrochemical and corrosion behaviour of stainless steels 316L and 317L in chloridised ammonium sulphate solution. Canadian Metallurgical Quarterly, 2012, 51, 471-484.	1.2	2
97	Kinetics of the ferric–ferrous couple on anodically passivated chalcopyrite (CuFeS2) electrodes. Hydrometallurgy, 2012, 125-126, 42-49.	4.3	52
98	Cobalt loss due to iron precipitation in ammoniacal carbonate solutions. Hydrometallurgy, 2012, 125-126, 144-147.	4.3	9
99	On the Development of Thermo-Kinetic Eh-pH Diagrams. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 1277-1283.	2.1	4
100	The deposition of smooth metallic molybdenum from aqueous electrolytes containing molybdate ions. Electrochemistry Communications, 2012, 15, 78-80.	4.7	50
101	Electrodeposition and Growth Mechanism of Copper Sulfide Nanowires. Journal of Physical Chemistry C, 2011, 115, 9320-9334.	3.1	76
102	Characterization of residue generated during medium temperature leaching of chalcopyrite concentrate under CESL conditions. Hydrometallurgy, 2011, 110, 107-114.	4.3	16
103	One-step template-free electrosynthesis of $300\hat{l}4m$ long copper sulfide nanowires. Electrochemistry Communications, 2011 , 13 , $12-15$.	4.7	25
104	The effects of mixtures of acid mist suppression reagents on zinc electrowinning from spent electrolyte solutions. Hydrometallurgy, 2011, 108, 1-10.	4.3	14
105	Estimation of Thermodynamic Properties of Aqueous Iron and Cobalt Ammines at Elevated Temperatures. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 520-526.	2.1	2
106	Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy, 2010, 104, 260-267.	4.3	26
107	Electrochemical evaluation of the surface of chalcopyrite during dissolution in sulfuric acid solution. Electrochimica Acta, 2010, 55, 5041-5056.	5.2	116
108	An Investigation on the Effects of Organic Additives on Zinc Electrowinning from Industrial Electrolyte. ECS Transactions, 2010, 28, 267-280.	0.5	7

#	Article	IF	CITATIONS
109	In Situ Electrochemical Analysis of Surface Layers on a Pyrrhotite Electrode in Hydrochloric Acid Solution. Journal of the Electrochemical Society, 2010, 157, C248.	2.9	15
110	Corrosion of nickelâ \in "chromium alloys, stainless steel and niobium at supercritical water oxidation conditions. Corrosion Science, 2010, 52, 118-124.	6.6	52
111	Reducing power consumption in zinc electrowinning. Jom, 2009, 61, 54-58.	1.9	27
112	Morphology of chalcopyrite leaching in acidic ferric sulfate media. Hydrometallurgy, 2009, 96, 183-188.	4.3	22
113	Electrochemical properties of metallurgical-grade silicon in hydrochloric acid. Electrochimica Acta, 2009, 54, 6548-6553.	5.2	11
114	Thermodynamics of the Corrosion of Alloy 625 Supercritical Water Oxidation Reactor Tubing in Ammoniacal Sulfate Solution. Corrosion, 2008, 64, 301-314.	1.1	19
115	Effect of Oxygen on the Corrosion Behavior of Alloy 625 from 25â€,toâ€,200°C. Journal of the Electrochemical Society, 2007, 154, C215.	2.9	21
116	Corrosion of niobium in sulphuric and hydrochloric acid solutions at 75 and 95 ${\rm \^{A}}^{\circ}{\rm C}.$ Corrosion Science, 2007, 49, 694-710.	6.6	69
117	A Polarization Study of Alloy 625, Nickel, Chromium, and Molybdenum in Ammoniated Sulfate Solutions. Corrosion, 2005, 61, 579-586.	1.1	11
118	The Effect of Chloride Ions on the Passive Films of Titanium in Sulfuric Acids. Solid State Phenomena, 0, 227, 67-70.	0.3	4
119	Communication—The Galvanic Effect on the Under-Deposit Corrosion of Titanium in Chloride Solutions. Journal of the Electrochemical Society, 0, , .	2.9	2