Samia Ruby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2151262/publications.pdf Version: 2024-02-01

SAMIA PURV

#	Article	IF	CITATIONS
1	Relevant dose of the environmental contaminant, tributyltin, promotes histomorphological changes in the thyroid gland of male rats. Molecular and Cellular Endocrinology, 2020, 502, 110677.	3.2	6
2	Combined nanomedicines targeting colorectal cancer stem cells and cancer cells. Journal of Controlled Release, 2020, 326, 387-395.	9.9	20
3	NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features. Endocrine Connections, 2018, 7, 78-90.	1.9	56
4	Predicting thyroid nodule malignancy at several prevalence values with a combined Bethesda-molecular test. Translational Research, 2017, 188, 58-66.e1.	5.0	4
5	Expression of Menin in the Human Thyroid Gland. Acta Endocrinologica, 2017, 13, 154-160.	0.3	2
6	Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and Apigenin. Oncotarget, 2015, 6, 31792-31804.	1.8	30
7	The Targeted Inactivation of TR 2 Gene in Thyroid Follicular Cells Suggests a New Mechanism of Regulation of Thyroid Hormone Production. Endocrinology, 2014, 155, 635-646.	2.8	19
8	Molecular characteristics of papillary thyroid carcinomas without BRAF mutation or RET/PTC rearrangement: relationship with clinico-pathological features. Endocrine-Related Cancer, 2009, 16, 467-481.	3.1	16
9	Use of ERT2â€iCreâ€ERT2 for conditional transgenesis. Genesis, 2008, 46, 193-199.	1.6	16
10	Connexin-32 acts as a downregulator of growth of thyroid gland. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E291-E299.	3.5	11
11	Evaluation of Gene Expression Profiles in Thyroid Nodule Biopsy Material to Diagnose Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1195-1202.	3.6	21
12	Conditional Transgenesis Using Dimerizable Cre (DiCre). PLoS ONE, 2007, 2, e1355.	2.5	46
13	Three-Dimensional Organization of Thyroid Cells into Follicle Structures Is a Pivotal Factor in the Control of Sodium/Iodide Symporter Expression. Endocrinology, 2006, 147, 2035-2042.	2.8	33
14	Silencing of the Tumor Suppressor GeneSLC5A8Is Associated withBRAFMutations in Classical Papillary Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3028-3035.	3.6	95
15	Evidence for Transcriptional and Posttranscriptional Alterations of the Sodium/Iodide Symporter Expression in Hypofunctioning Benign and Malignant Thyroid Tumors. American Journal of Pathology, 2004, 165, 25-34.	3.8	52
16	The Porcine Sodium/Iodide Symporter Gene Exhibits an Uncommon Expression Pattern Related to the Use of Alternative Splice Sites not Present in the Human or Murine Species. Endocrinology, 2003, 144, 1074-1085.	2.8	26
17	Thyroid cell proliferation in response to forced expression of gap junction proteins. European Journal of Cell Biology, 2002, 81, 243-252.	3.6	21
18	Characterization and Semiquantitative Analyses of Pendrin Expressed in Normal and Tumoral Human Thyroid Tissues. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1700-1707.	3.6	4

Samia Ruby

#	Article	IF	CITATIONS
19	Connexin 32 Fused to the Green Fluorescent Protein Retains its Ability to Control the Proliferation of Thyroid Cells. Cell Communication and Adhesion, 2001, 8, 447-452.	1.0	4
20	Role of the conserved C-terminal region of thyroid hormone receptor-α in ligand-dependent transcriptional activation. Molecular and Cellular Endocrinology, 1998, 138, 105-114.	3.2	7
21	Expression of α-and β-subunits and activity of Na+K+ATPase in pig thyroid cells in primary culture: modulation by thyrotropin and thyroid hormones. Molecular and Cellular Endocrinology, 1998, 146, 93-101.	3.2	14
22	Characterization of the Rat Thyroid Iodide Transporter Using Anti-peptide Antibodies. Journal of Biological Chemistry, 1997, 272, 18245-18249.	3.4	79
23	Restoration of Cell-to-Cell Communication in Thyroid Cell Lines by Transfection with and Stable Expression of the Connexin-32 Gene. Journal of Biological Chemistry, 1997, 272, 24710-24716.	3.4	41
24	Analysis of the functional state of T3 nuclear receptors expressed in thyroid cells. Molecular and Cellular Endocrinology, 1996, 119, 95-104.	3.2	7
25	Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor Molecular and Cellular Biology, 1994, 14, 5756-5765.	2.3	118
26	Cell-cell interactions in the process of differentiation of thyroid epithelial cells into follicles: A study by microinjection and fluorescence microscopy on in vitro reconstituted thyroid follicles. Journal of Cellular Physiology, 1990, 145, 414-427.	4.1	33
27	In vitro studies of the thyroglobulin degradation pathway: endocytosis and delivery of thyroglobulin to lysosomes, release of thyroglobulin cleavage products — iodotyrosines and iodothyronines. Biochimie, 1989, 71, 247-262.	2.6	13
28	Evidence for the presence of a very high concentration of arylsulfatase A in the pig thyroid: Identification of arylsulfatase A subunits as the two major glycoproteins in purified thyroid lysosomes. Archives of Biochemistry and Biophysics, 1989, 273, 170-179.	3.0	5
29	Identification of two subpopulations of thyroid lysosomes: relation to the thyroglobulin proteolytic pathway. Biochemical Journal, 1988, 253, 523-532.	3.7	14