
Derek Bowie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2151233/publications.pdf Version: 2024-02-01

DEDEK ROWIE

#	Article	IF	CITATIONS
1	Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron, 1995, 15, 453-462.	3.8	526
2	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	7.1	237
3	lonotropic Glutamate Receptors & CNS Disorders. CNS and Neurological Disorders - Drug Targets, 2008, 7, 129-143.	0.8	177
4	Excitotoxic Death of Retinal Neurons <i>In Vivo</i> Occurs via a Non-Cell-Autonomous Mechanism. Journal of Neuroscience, 2009, 29, 5536-5545.	1.7	167
5	Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron, 1995, 14, 833-843.	3.8	154
6	Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation. Journal of Neuroscience, 2015, 35, 12088-12102.	1.7	111
7	Activity-Dependent Modulation of Glutamate Receptors by Polyamines. Journal of Neuroscience, 1998, 18, 8175-8185.	1.7	105
8	Novel α1 and γ2 GABA _A receptor subunit mutations in families with idiopathic generalized epilepsy. European Journal of Neuroscience, 2011, 34, 237-249.	1.2	98
9	Permeation and block of rat glur6 glutamate receptor channels by internal and external polyamines. Journal of Physiology, 1997, 502, 575-589.	1.3	94
10	Automating Single Subunit Counting of Membrane Proteins in Mammalian Cells. Journal of Biological Chemistry, 2012, 287, 35912-35921.	1.6	85
11	Functional Stoichiometry of Glutamate Receptor Desensitization. Journal of Neuroscience, 2002, 22, 3392-3403.	1.7	76
12	External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. Journal of Physiology, 2002, 539, 725-733.	1.3	67
13	Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nature Communications, 2014, 5, 3168.	5.8	62
14	Distinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes. Neuron, 2016, 89, 1264-1276.	3.8	61
15	Allosteric Regulation and Spatial Distribution of Kainate Receptors Bound to Ancillary Proteins. Journal of Physiology, 2003, 547, 373-385.	1.3	56
16	Redefining the classification of AMPAâ€selective ionotropic glutamate receptors. Journal of Physiology, 2012, 590, 49-61.	1.3	55
17	Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins. Journal of Biological Chemistry, 2018, 293, 18789-18802.	1.6	50
18	External lons Are Coactivators of Kainate Receptors. Journal of Neuroscience, 2006, 26, 5750-5755.	1.7	43

DEREK BOWIE

#	Article	IF	CITATIONS
19	Identification of a novel di-leucine motif mediating K+/Clâ^' cotransporter KCC2 constitutive endocytosis. Cellular Signalling, 2008, 20, 1769-1779.	1.7	38
20	Light triggers expression of philanthotoxin-insensitive Ca2+-permeable AMPA receptors in the developing rat retina. Journal of Physiology, 2007, 582, 95-111.	1.3	37
21	Defining the structural relationship between kainate-receptor deactivation and desensitization. Nature Structural and Molecular Biology, 2013, 20, 1054-1061.	3.6	34
22	Na+/Cl- Dipole Couples Agonist Binding to Kainate Receptor Activation. Journal of Neuroscience, 2007, 27, 6800-6809.	1.7	31
23	Ionâ€dependent gating of kainate receptors. Journal of Physiology, 2010, 588, 67-81.	1.3	30
24	Concanavalin-A reports agonist-induced conformational changes in the intact GluR6 kainate receptor. Journal of Physiology, 2006, 572, 201-213.	1.3	25
25	Hydrogen Peroxide Increases GABAA Receptor-Mediated Tonic Current in Hippocampal Neurons. Journal of Neuroscience, 2014, 34, 10624-10634.	1.7	25
26	Â6-Containing GABAA Receptors Are the Principal Mediators of Inhibitory Synapse Strengthening by Insulin in Cerebellar Granule Cells. Journal of Neuroscience, 2015, 35, 9676-9688.	1.7	25
27	Stargazin and cornichon-3 relieve polyamine block of AMPA receptors by enhancing blocker permeation. Journal of General Physiology, 2018, 150, 67-82.	0.9	25
28	Nanoscale Mobility of the Apo State and TARP Stoichiometry Dictate the Gating Behavior of Alternatively Spliced AMPA Receptors. Neuron, 2019, 102, 976-992.e5.	3.8	25
29	Thiocyanate ions selectively antagonize AMPAâ€evoked responses in <i>Xenopus laevis</i> oocytes microinjected with rat brain mRNA. British Journal of Pharmacology, 1993, 109, 779-787.	2.7	24
30	Kainate receptor poreâ€forming and auxiliary subunits regulate channel block by a novel mechanism. Journal of Physiology, 2016, 594, 1821-1840.	1.3	24
31	Cerebellar Stellate Cell Excitability Is Coordinated by Shifts in the Gating Behavior of Voltage-Gated Na ⁺ and A-Type K ⁺ Channels. ENeuro, 2019, 6, ENEURO.0126-19.2019.	0.9	24
32	Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: a problem of interpretation. Journal of Physiology, 2011, 589, 5383-5390.	1.3	23
33	Binding Mode of an α-Amino Acid-Linked Quinoxaline-2,3-dione Analogue at Glutamate Receptor Subtype GluK1. ACS Chemical Neuroscience, 2015, 6, 845-854.	1.7	21
34	Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization. Journal of Biological Chemistry, 2017, 292, 13258-13270.	1.6	21
35	Crosslinking the ligandâ€binding domain dimer interface locks kainate receptors out of the main open state. Journal of Physiology, 2013, 591, 3873-3885.	1.3	20
36	Architecture and structural dynamics of the heteromeric CluK2/K5 kainate receptor. ELife, 2021, 10, .	2.8	20

DEREK BOWIE

#	Article	IF	CITATIONS
37	Functional Characterization and In Silico Docking of Full and Partial GluK2 Kainate Receptor Agonists. Molecular Pharmacology, 2009, 75, 1096-1107.	1.0	19
38	Functional Validation of Heteromeric Kainate Receptor Models. Biophysical Journal, 2017, 113, 2173-2177.	0.2	16
39	Cations But Not Anions Regulate the Responsiveness of Kainate Receptors. Journal of Neuroscience, 2011, 31, 2136-2144.	1.7	13
40	Retour aux sources: defining the structural basis of glutamate receptor activation. Journal of Physiology, 2015, 593, 97-110.	1.3	13
41	Bursting in cerebellar stellate cells induced by pharmacological agents: Non-sequential spike adding. PLoS Computational Biology, 2020, 16, e1008463.	1.5	9
42	Design and Synthesis of a Series of <scp>l</scp> - <i>trans</i> -4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2 <i>S</i> ,4 <i>R</i>)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid. Journal of Medicinal Chemistry, 2017, 60, 441-457.	2.9	6
43	Modeling excitability in cerebellar stellate cells: Temporal changes in threshold, latency and frequency of firing. Communications in Nonlinear Science and Numerical Simulation, 2020, 82, 105014.	1.7	6
44	lonotropic glutamate receptors: structure, function and dysfunction. Journal of Physiology, 2022, 600, 175-179.	1.3	6
45	Nitric Oxide Signaling Strengthens Inhibitory Synapses of Cerebellar Molecular Layer Interneurons through a GABARAP-Dependent Mechanism. Journal of Neuroscience, 2020, 40, 3348-3359.	1.7	5
46	Intrinsic plasticity of cerebellar stellate cells is mediated by NMDA receptor regulation of voltageâ€gated Na + channels. Journal of Physiology, 2021, 599, 647-665.	1.3	5
47	Interplay between expressed non-NMDA receptors and endogenous calcium-activated chloride currents in Xenopus laevis oocytes. Neuroscience Letters, 1993, 151, 4-8.	1.0	4
48	Speciesâ€dependent functional properties of nonâ€NMDA receptors expressed in <i>Xenopus laevis</i> oocytes injected with mammalian and avian brain mRNA. British Journal of Pharmacology, 1994, 111, 803-810.	2.7	4
49	Thinking of Co ²⁺ â€staining explant tissue or cultured cells? How to make it reliable and specific. European Journal of Neuroscience, 2012, 35, 1201-1207.	1.2	4
50	Switching in Cerebellar Stellate Cell Excitability in Response to a Pair of Inhibitory/Excitatory Presynaptic Inputs: A Dynamical System Perspective. Neural Computation, 2020, 32, 626-658.	1.3	4
51	The many faces of the AMPA-type ionotropic glutamate receptor. Neuropharmacology, 2022, 208, 108975.	2.0	4
52	A Step-by-Step Guide to Single-Subunit Counting of Membrane-Bound Proteins in Mammalian Cells. Neuromethods, 2016, , 15-30.	0.2	3
53	Ligandâ€gated ion channels: from genes to behaviour. Journal of Physiology, 2012, 590, 9-11.	1.3	2
54	Coupling cellular metabolism to neuronal signalling. Journal of Physiology, 2015, 593, 3413-3415.	1.3	2

DEREK BOWIE

#	Article	IF	CITATIONS
55	Neurotransmitterâ€gated ion channels, still front and centre stage. Journal of Physiology, 2021, 599, 389-395.	1.3	2
56	External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. , 2002, 539, 725.		2
57	lonotropic glutamate receptors made crystal clear. Trends in Neurosciences, 2014, 37, 687-688.	4.2	1
58	Discovery of novel small-molecule antagonists for GluK2. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2416-2420.	1.0	1
59	Mechanism of AMPA Receptor Gating Re-Shaped by Auxiliary Proteins. Biophysical Journal, 2016, 110, 201a.	0.2	1
60	Shared and unique aspects of ligand―and voltageâ€gated ionâ€channel gating. Journal of Physiology, 2018, 596, 1829-1832.	1.3	1
61	Spliced isoforms of the cardiac Nav1.5 channel modify channel activation by distinct structural mechanisms. Journal of General Physiology, 2022, 154, .	0.9	1
62	TARP Modulation of AMPA Receptor Pharmacology: Polyamine Block and Competitive Antagonism. Biophysical Journal, 2010, 98, 523a-524a.	0.2	0
63	An Automated Method to Study Oligomerization of Single Membrane-Bound Proteins using Fluorescence Imaging. Biophysical Journal, 2012, 102, 114a-115a.	0.2	0
64	Functional Consequences of Cysteine Mutations at the Kainate Receptor Dimer Interface. Biophysical Journal, 2014, 106, 150a.	0.2	0
65	Ionotropic glutamate receptors: alive and kicking. Journal of Physiology, 2015, 593, 25-27.	1.3	Ο
66	Can Activation and Desensitization Properties of iGluRs Be Predicted and Understood by Studying the LBD Dimer Dynamics?. Biophysical Journal, 2015, 108, 287a-288a.	0.2	0
67	Closed-state inactivation of cardiac, skeletal, and neuronal sodium channels is isoform specific. Journal of General Physiology, 2022, 154, .	0.9	0