
Toshifumi Satoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/215116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and bioactivities of new N-terminal dipeptide mimetics with aromatic amide moiety: Broad-spectrum antibacterial activity and high antineoplastic activity. European Journal of Medicinal Chemistry, 2022, 228, 113977.	2.6	6
2	One-step synthesis of sequence-controlled multiblock polymers with up to 11 segments from monomer mixture. Nature Communications, 2022, 13, 163.	5.8	37
3	PEGylation of silver nanoparticles by physisorption of cyclic poly(ethylene glycol) for enhanced dispersion stability, antimicrobial activity, and cytotoxicity. Nanoscale Advances, 2022, 4, 532-545.	2.2	9
4	Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films. Polymer Journal, 2022, 54, 455-464.	1.3	9
5	Unimodal and Well-Defined Nanomicelles Assembled by Topology-Controlled Bicyclic Block Copolymers. Macromolecules, 2022, 55, 862-872.	2.2	2
6	Membrane-active amino acid-coupled polyetheramine derivatives with high selectivity and broad-spectrum antibacterial activity. Acta Biomaterialia, 2022, 142, 136-148.	4.1	8
7	Oxime-modified hierarchical self-assembly polyimide microspheres for high-efficient uranium recovery from wastewater. Environmental Science: Nano, 2022, 9, 1168-1179.	2.2	11
8	Sustainable Alternatives to Nondegradable Medical Plastics. ACS Sustainable Chemistry and Engineering, 2022, 10, 4792-4806.	3.2	15
9	Trapping probabilities of multiple rings in end-linked gels. Polymer, 2022, 245, 124683.	1.8	7
10	Topology and Sequence-Dependent Micellization and Phase Separation of Pluronic L35, L64, 10R5, and 17R4: Effects of Cyclization and the Chain Ends. Polymers, 2022, 14, 1823.	2.0	2
11	Improving the mechanical properties of polycaprolactone using functionalized nanofibrillated bacterial cellulose with high dispersibility and long fiber length as a reinforcement material. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106978.	3.8	11
12	Fabrication of Ultrafine, Highly Ordered Nanostructures Using Carbohydrate-Inorganic Hybrid Block Copolymers. Nanomaterials, 2022, 12, 1653.	1.9	2
13	Improving the performance of photonic transistor memory devices using conjugated block copolymers as a floating gate. Journal of Materials Chemistry C, 2021, 9, 1259-1268.	2.7	28
14	Carbohydrate-attached fullerene derivative for selective localization in ordered carbohydrate-block-poly(3-hexylthiophene) nanodomains. Carbohydrate Polymers, 2021, 255, 117528.	5.1	4
15	Topologically controlled phase transitions and nanoscale film self-assemblies of cage poly(<i>ε</i> -caprolactone) and its counterparts. Polymer Chemistry, 2021, 12, 744-758.	1.9	9
16	Correlations of nanoscale film morphologies and topological confinement of three-armed cage block copolymers. Polymer Chemistry, 2021, 12, 3451-3460.	1.9	4
17	Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. ACS Applied Materials & Interfaces, 2021, 13, 2932-2943.	4.0	42
18	Influence of Topological Confinement on Nanoscale Film Morphologies of Tricyclic Block Copolymers. Macromolecules, 2021, 54, 4120-4127.	2.2	5

#	Article	IF	CITATIONS
19	Cyclization of PEG and Pluronic Surfactants and the Effects of the Topology on Their Interfacial Activity. Langmuir, 2021, 37, 6974-6984.	1.6	4
20	Smart Access to Sequentially and Architecturally Controlled Block Polymers via a Simple Catalytic Polymerization System. ACS Catalysis, 2021, 11, 5999-6009.	5.5	49
21	Highly Ordered Nanoscale Film Morphologies of Block Copolymers Governed by Nonlinear Topologies. ACS Macro Letters, 2021, 10, 811-818.	2.3	9
22	Enhanced Self-Assembly and Mechanical Properties of Cellulose-Based Triblock Copolymers: Comparisons with Amylose-Based Triblock Copolymers. ACS Sustainable Chemistry and Engineering, 2021, 9, 9779-9788.	3.2	8
23	Oneâ€Shot Intrablock Crossâ€Linking of Linear Diblock Copolymer to Realize Janusâ€Shaped Singleâ€Chain Nanoparticles. Angewandte Chemie, 2021, 133, 18270-18276.	1.6	3
24	One‧hot Intrablock Crossâ€Linking of Linear Diblock Copolymer to Realize Janus‧haped Singleâ€Chain Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 18122-18128.	7.2	13
25	Facile one-pot synthesis of rod-coil bio-block copolymers and uncovering their role in forming the efficient stretchable touch-responsive light emitting diodes. Chemical Engineering Journal, 2021, 418, 129421.	6.6	17
26	Engineered ε-decalactone lipomers bypass the liver to selectively <i>in vivo</i> deliver mRNA to the lungs without targeting ligands. Materials Horizons, 2021, 8, 2251-2259.	6.4	18
27	Densely Arrayed Cage-Shaped Polymer Topologies Synthesized via Cyclopolymerization of Star-Shaped Macromonomers. Macromolecules, 2021, 54, 9079-9090.	2.2	5
28	Suzuki–Miyaura Catalyst-Transfer Polycondensation of Triolborate-Type Carbazole Monomers. Polymers, 2021, 13, 4168.	2.0	3
29	Artificial polyhydroxyalkanoate poly[2-hydroxybutyrate-block-3-hydroxybutyrate] elastomer-like material. Scientific Reports, 2021, 11, 22446.	1.6	12
30	Topology-Dependent Interaction of Cyclic Poly(ethylene glycol) Complexed with Gold Nanoparticles against Bovine Serum Albumin for a Colorimetric Change. Langmuir, 2021, , .	1.6	2
31	Facile synthesis of poly(trimethylene carbonate) by alkali metal carboxylate-catalyzed ring-opening polymerization. Polymer Journal, 2020, 52, 103-110.	1.3	15
32	Synthesis and asymmetric catalytic performance of one-handed helical poly(phenylacetylene)s bearing proline dipeptide pendants. Reactive and Functional Polymers, 2020, 146, 104392.	2.0	4
33	Organic–Inorganic Nanocomposite Film for Highâ€Performance Stretchable Resistive Memory Device. Macromolecular Rapid Communications, 2020, 41, 1900542.	2.0	18
34	Light Down-Converter Based on Luminescent Nanofibers from the Blending of Conjugated Rod-Coil Block Copolymers and Perovskite through Electrospinning. Polymers, 2020, 12, 84.	2.0	10
35	Detailed Structural Analyses of Nanofibrillated Bacterial Cellulose and Its Application as Binder Material for a Display Device. Biomacromolecules, 2020, 21, 581-588.	2.6	9
36	Competing Molecular Packing of Blocks in a Lamella-Forming Carbohydrate- <i>block</i> -poly(3-hexylthiophene) Copolymer. Macromolecules, 2020, 53, 9054-9064.	2.2	8

#	Article	IF	CITATIONS
37	Suzuki–Miyaura catalyst-transfer polycondensation of triolborate-type fluorene monomer: toward rapid access to polyfluorene-containing block and graft copolymers from various macroinitiators. Polymer Chemistry, 2020, 11, 6832-6839.	1.9	15
38	Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules, 2020, 53, 7496-7510.	2.2	36
39	characterization of d-LA homo-oligomer degradation by the isolated strains. Polymer Degradation and Stability, 2020, 179, 109231.	2.7	11
40	Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene) Tj ETQq0 0 0 rgBT	- Overlock 5.8	₹ 10 Tf 50 62 105
41	A theoretical study on the alkali metal carboxylateâ€promoted <scp>Lâ€Lactide</scp> polymerization. Journal of Computational Chemistry, 2020, 41, 2197-2202.	1.5	9
42	Highâ€Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod–Coil Materials as a Floating Gate. Advanced Materials, 2020, 32, e2002638.	11.1	80
43	Bicyclic Topology Transforms Self-Assembled Nanostructures in Block Copolymer Thin Films. Nano Letters, 2020, 20, 6520-6525.	4.5	14
44	Highly asymmetric lamellar nanostructures from nanoparticle–linear hybrid block copolymers. Nanoscale, 2020, 12, 16526-16534.	2.8	8
45	Programmed folding into spiro-multicyclic polymer topologies from linear and star-shaped chains. Communications Chemistry, 2020, 3, .	2.0	13
46	Rapid access to discrete and monodisperse block co-oligomers from sugar and terpenoid toward ultrasmall periodic nanostructures. Communications Chemistry, 2020, 3, .	2.0	19
47	An organocatalytic ring-opening polymerization approach to highly alternating copolymers of lactic acid and glycolic acid. Polymer Chemistry, 2020, 11, 6365-6373.	1.9	18
48	Metal-free anionic polymerization of n-hexyl isocyanate catalyzed by phosphazene bases. Polymer Chemistry, 2020, 11, 6073-6080.	1.9	6
49	Design of Self-Cross-Linkable Poly(<i>n</i> -butyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 267 Td (acrylate)- and Self-Healing Properties. ACS Applied Polymer Materials, 2020, 2, 5432-5443.	- <i>co</i> - 2.0	-poly[<i>N<!--<br-->17</i>
50	Chemically Controlled Volatile and Nonvolatile Resistive Memory Characteristics of Novel Oxygen-Based Polymers. ACS Applied Materials & Interfaces, 2020, 12, 28435-28445.	4.0	10
51	Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers. Macromolecules, 2020, 53, 5408-5417.	2.2	24
52	Sweet Pluronic poly(propylene oxide)-b-oligosaccharide block copolymer systems: Toward sub-4Ânm thin-film nanopattern resolution. European Polymer Journal, 2020, 134, 109831.	2.6	8
53	Synthesis of poly(phenylacetylene)s containing chiral phenylethyl carbamate residues as coatedâ€ŧype CSPs with high solvent tolerability. Chirality, 2020, 32, 547-555.	1.3	3
54	Facile Fabrication of Stretchable Touch-Responsive Perovskite Light-Emitting Diodes Using Robust Stretchable Composite Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 14408-14415.	4.0	46

#	Article	IF	CITATIONS
55	Metallopolymer- <i>block</i> -oligosaccharide for sub-10 nm microphase separation. Polymer Chemistry, 2020, 11, 2995-3002.	1.9	11
56	Nanostructure- and Orientation-Controlled Resistive Memory Behaviors of Carbohydrate- <i>block</i> -Polystyrene with Different Molecular Weights via Solvent Annealing. ACS Applied Materials & Interfaces, 2020, 12, 23217-23224.	4.0	16
57	Influence of different sequences of <scp>l</scp> -proline dipeptide derivatives in the pendants on the helix of poly(phenylacetylene)s and their enantioseparation properties. Polymer Chemistry, 2019, 10, 4810-4817.	1.9	16
58	Macromolecular [2]Rotaxanes Linked with Polystyrene: Properties and Nanoscale Film Morphologies. Macromolecules, 2019, 52, 5325-5336.	2.2	7
59	Phase Transition Behaviors and Nanoscale Film Morphologies of Poly(δâ€valerolactone) Axles Bearing Movable and Fixed Rotaxane Wheels. Macromolecular Rapid Communications, 2019, 40, 1900334.	2.0	3
60	Effect of a conjugated/elastic block sequence on the morphology and electronic properties of polythiophene based stretchable block copolymers. Polymer Chemistry, 2019, 10, 5452-5464.	1.9	29
61	Facile 3D Boron Nitride Integrated Electrospun Nanofibrous Membranes for Purging Organic Pollutants. Nanomaterials, 2019, 9, 1383.	1.9	16
62	A versatile synthetic strategy for macromolecular cages: intramolecular consecutive cyclization of star-shaped polymers. Chemical Science, 2019, 10, 440-446.	3.7	28
63	Synthesis of helical poly(phenylacetylene) derivatives bearing diastereomeric pendants for enantioseparation by HPLC. New Journal of Chemistry, 2019, 43, 3439-3446.	1.4	15
64	Microphase separation of carbohydrate-based star-block copolymers with sub-10 nm periodicity. Polymer Chemistry, 2019, 10, 1119-1129.	1.9	29
65	Downsizing feature of microphase-separated structures <i>via</i> intramolecular crosslinking of block copolymers. Chemical Science, 2019, 10, 3330-3339.	3.7	14
66	Installing a functional group into the inactive ω-chain end of PMMA and PS- <i>b</i> PMMA by terminal-selective transesterification. Polymer Chemistry, 2019, 10, 3390-3398.	1.9	5
67	Nanoscale film morphology and property characteristics of dielectric polymers bearing monomeric and dimeric adamantane units. Polymer, 2019, 169, 225-233.	1.8	12
68	Biodegradable Compatibilizers for Poly(hydroxyalkanoate)/Poly(Îμ-caprolactone) Blends through Click Reactions with End-Functionalized Microbial Poly(hydroxyalkanoate)s. ACS Sustainable Chemistry and Engineering, 2019, 7, 7969-7978.	3.2	27
69	Micelle Structure Details and Stabilities of Cyclic Block Copolymer Amphiphile and Its Linear Analogues. Polymers, 2019, 11, 163.	2.0	16
70	Recyclable helical poly(phenylacetylene)â€supported catalyst for asymmetric aldol reaction in aqueous media. Journal of Polymer Science Part A, 2019, 57, 1024-1031.	2.5	27
71	Trimethyl Glycine as an Environmentally Benign and Biocompatible Organocatalyst for Ring-Opening Polymerization of Cyclic Carbonate. ACS Sustainable Chemistry and Engineering, 2019, 7, 8868-8875.	3.2	12
72	Facile Preparation of Cu/Ag Core/Shell Electrospun Nanofibers as Highly Stable and Flexible Transparent Conductive Electrodes for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 10118-10127.	4.0	50

#	Article	IF	CITATIONS
73	Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots—Polymer nanofibers through biaxial electrospinning. APL Materials, 2019, 7, .	2.2	42
74	Synthesis and characterization of cyclic P3HT as a donor polymer for organic solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 266-271.	2.4	3
75	Post-polymerization modification of PS-b-PMMA for achieving directed self-assembly with sub-10nm feature size. , 2019, , .		1
76	Synthesis, Thermal Properties, and Morphologies of Amphiphilic Brush Block Copolymers with Tacticity-Controlled Polyether Main Chain. Macromolecules, 2018, 51, 2939-2950.	2.2	10
77	Alkali Metal Carboxylate as an Efficient and Simple Catalyst for Ring-Opening Polymerization of Cyclic Esters. Macromolecules, 2018, 51, 689-696.	2.2	61
78	Dynamic Changes of Intracellular Monomer Levels Regulate Block Sequence of Polyhydroxyalkanoates in Engineered <i>Escherichia coli</i> . Biomacromolecules, 2018, 19, 662-671.	2.6	27
79	Water-Resistant Efficient Stretchable Perovskite-Embedded Fiber Membranes for Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 2210-2215.	4.0	113
80	Highly Ordered Cylinder Morphologies with 10 nm Scale Periodicity in Biomass-Based Block Copolymers. Macromolecules, 2018, 51, 428-437.	2.2	23
81	Synthesis of Hard–Soft–Hard Triblock Copolymers, Poly(2-naphthyl glycidyl) Tj ETQq1 1 0.784314 rgBT /Ov ether]- <i>block</i> -poly(2-naphthyl glycidyl ether), for Solid Electrolytes. Macromolecules, 2018, 51, 2293-2301.	erlock 10 7 2.2	rf 50 432 Td (33
82	A Comparative Study of Dynamic Light and X-Ray Scatterings on Micelles of Topological Polymer Amphiphiles. Polymers, 2018, 10, 1347.	2.0	20
83	Synthesis, Isolation, and Properties of All Head-to-Tail Cyclic Poly(3-hexylthiophene): Fully Delocalized Exciton over the Defect-Free Ring Polymer. Macromolecules, 2018, 51, 9284-9293.	2.2	17
84	Novel Multifunctional Luminescent Electrospun Fluorescent Nanofiber Chemosensor-Filters and Their Versatile Sensing of pH, Temperature, and Metal Ions. Polymers, 2018, 10, 1259.	2.0	18
85	Facile and Efficient Modification of Polystyrene- <i>block</i> -poly(methyl methacrylate) for Achieving Sub-10 nm Feature Size. Macromolecules, 2018, 51, 8064-8072.	2.2	35
86	Chain-End Functionalization with a Saccharide for 10 nm Microphase Separation: "Classical― PS- <i>b</i> -PMMA versus PS- <i>b</i> -PMMA-Saccharide. Macromolecules, 2018, 51, 8870-8877.	2.2	25
87	Unraveling the stress effects on the optical properties of stretchable rod-coil polyfluorene-poly(<i>n</i> -butyl acrylate) block copolymer thin films. Polymer Chemistry, 2018, 9, 3820-3831.	1.9	28
88	Multicyclic Polymer Synthesis through Controlled/Living Cyclopolymerization of α,ω-Dinorbornenyl-Functionalized Macromonomers. Macromolecules, 2018, 51, 3855-3864.	2.2	33
89	Synthesis of μ-ABC Tricyclic Miktoarm Star Polymer via Intramolecular Click Cyclization. Polymers, 2018, 10, 877.	2.0	6
90	Control over Molecular Architectures of Carbohydrate-Based Block Copolymers for Stretchable Electrical Memory Devices. Macromolecules, 2018, 51, 4966-4975.	2.2	32

#	Article	IF	CITATIONS
91	Polyacetylenes as Colorimetric and Fluorescent Chemosensor for Anions. Polymer Reviews, 2017, 57, 159-174.	5.3	26
92	Stretchable Conjugated Rod–Coil Poly(3-hexylthiophene)- <i>block</i> -poly(butyl acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules, 2017, 50, 1442-1452.	2.2	83
93	Synthesis and characterization of Eu(III)-based coordination complexes of modified d-glucosamine and poly(N-isopropylacrylamide). Optical Materials, 2017, 72, 115-121.	1.7	8
94	A facile strategy for manipulating micellar size and morphology through intramolecular cross-linking of amphiphilic block copolymers. Polymer Chemistry, 2017, 8, 3647-3656.	1.9	15
95	Synthesis and characterization of Eu(III) complexes of modified d-glucosamine and poly(N-isopropylacrylamide). Materials Science and Engineering C, 2017, 78, 603-608.	3.8	34
96	Synthesis of Well-Defined Three- and Four-Armed Cage-Shaped Polymers via "Topological Conversion― from Trefoil- and Quatrefoil-Shaped Polymers. Macromolecules, 2017, 50, 97-106.	2.2	43
97	Immobilization of helical poly(phenylacetylene)s having l-phenylalanine ethyl ester pendants onto silica gel as chiral stationary phases for HPLC. Polymer, 2017, 131, 17-24.	1.8	17
98	Synthesis of lactate (LA)-based poly(ester-urethane) using hydroxyl-terminated LA-based oligomers from a microbial secretion system. Journal of Polymer Research, 2017, 24, 1.	1.2	13
99	One-Step Production of Amphiphilic Nanofibrillated Cellulose Using a Cellulose-Producing Bacterium. Biomacromolecules, 2017, 18, 3432-3438.	2.6	29
100	Well-defined and stable nanomicelles self-assembled from brush cyclic and tadpole copolymer amphiphiles: a versatile smart carrier platform. NPG Asia Materials, 2017, 9, e453-e453.	3.8	36
101	Design and synthesis of thermoresponsive aliphatic polyethers with a tunable phase transition temperature. Polymer Chemistry, 2017, 8, 5698-5707.	1.9	27
102	End-Functionalized Poly(N-isopropylacrylamide) with d-Glucosamine through Different Initiator from C-1 and C-2 Positions via Atom Transfer Radical Polymerization. Materials, 2016, 9, 913.	1.3	4
103	Temperature-Triggered Switchable Helix-Helix Inversion of Poly(phenylacetylene) Bearing l-Valine Ethyl Ester Pendants and Its Chiral Recognition Ability. Molecules, 2016, 21, 1583.	1.7	13
104	Donor–Acceptor Poly(3â€hexylthiophene)â€ <i>block</i> â€Pendent Poly(isoindigo) with Dual Roles of Charge Transporting and Storage Layer for Highâ€Performance Transistorâ€Type Memory Applications. Advanced Functional Materials, 2016, 26, 2695-2705.	7.8	49
105	Intramolecular olefin metathesis as a robust tool to synthesize single-chain nanoparticles in a size-controlled manner. Polymer Chemistry, 2016, 7, 4782-4792.	1.9	23
106	B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization of <i>N,N</i> -Disubstituted Acrylamide Using Hydrosilane: Effect of Hydrosilane and Monomer Structures, Polymerization Mechanism, and Synthesis of α-End-Functionalized Polyacrylamides. Macromolecules, 2016, 49, 3049-3060.	2.2	24
107	Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction. Applied Microbiology and Biotechnology, 2016, 100, 4375-4383.	1.7	8
108	High-performance stretchable resistive memories using donor–acceptor block copolymers with fluorene rods and pendent isoindigo coils. NPG Asia Materials, 2016, 8, e298-e298.	3.8	40

#	Article	IF	CITATIONS
109	Effect of chain architecture on the phase transition of star and cyclic poly(N-isopropylacrylamide) in water. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2059-2068.	2.4	27
110	Heat Storage and Release Tests of Heat Storage Material with Crystal Transformation. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2016, 14, Pi_1-Pi_6.	0.1	0
111	Influence of Degradation on Storage of Heat of Heat Storage Material with Crystal Transformation. Netsu Bussei, 2016, 29, 173-178.	0.1	3
112	Self-Assembly of Maltoheptaose- <i>block</i> -polycaprolactone Copolymers: Carbohydrate-Decorated Nanoparticles with Tunable Morphology and Size in Aqueous Media. Macromolecules, 2016, 49, 4178-4194.	2.2	29
113	InÂvitro synthesis of polyhydroxyalkanoates using thermostable acetyl-CoA synthetase, CoA transferase, and PHA synthase from thermotorelant bacteria. Journal of Bioscience and Bioengineering, 2016, 122, 660-665.	1.1	25
114	Synthesis of Well-Defined Amphiphilic Star-Block and Miktoarm Star Copolyethers via <i>t</i> -Bu-P ₄ -Catalyzed Ring-Opening Polymerization of Glycidyl Ethers. Macromolecules, 2016, 49, 499-509.	2.2	39
115	Sequential Mukaiyama–Michael reaction induced by carbon acids. Chemical Communications, 2016, 52, 3280-3283.	2.2	17
116	Synthesis, morphology, and electrical memory application of oligosaccharide-based block copolymers with π-conjugated pyrene moieties and their supramolecules. Polymer Chemistry, 2016, 7, 1249-1263.	1.9	15
117	Synthesis and opto-electrical properties of carbazole functionalized quinoline based conjugated oligomer for luminescent devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 755-762.	0.1	11
118	Sub-20 nm Microphase-Separated Structures in Hybrid Block Copolymers Consisting of Polycaprolactone and Maltoheptaose. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 635-642.	0.1	8
119	Phosphazene Base-Catalyzed Living Ring-Opening Polymerization System for Substituted Epoxides. Kobunshi Ronbunshu, 2015, 72, 295-305.	0.2	1
120	Influence of Helical Structure on Chiral Recognition of Poly(phenylacetylene)s Bearing Phenylcarbamate Residues of <scp>L</scp> â€Phenylglycinol and Amide Linage as Pendants. Chirality, 2015, 27, 500-506.	1.3	16
121	Diphenyl Phosphateâ€Catalyzed Ringâ€Opening Polymerization of 1,5â€Dioxepanâ€2â€one. Macromolecular Symposia, 2015, 349, 74-84.	0.4	9
122	Synthesis and chiral recognition of helical poly(phenylacetylene)s bearing <scp>l</scp> â€phenylglycinol and its phenylcarbamates as pendants. Journal of Polymer Science Part A, 2015, 53, 809-821.	2.5	21
123	Organophosphate-catalyzed bulk ring-opening polymerization as an environmentally benign route leading to block copolyesters, end-functionalized polyesters, and polyester-based polyurethane. Polymer Chemistry, 2015, 6, 4374-4384.	1.9	53
124	Synthesis of Oligosaccharide-Based Block Copolymers with Pendent π-Conjugated Oligofluorene Moieties and Their Electrical Device Applications. Macromolecules, 2015, 48, 3907-3917.	2.2	28
125	Synthesis of multifunctional poly(1-pyrenemethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 Td (methad nanofibers for metal ion sensory applications. Polymer Chemistry, 2015, 6, 2327-2336.	crylate)-b- 1.9	poly(N-isopro 17
126	Sub-10 nm Scale Nanostructures in Self-Organized Linear Di- and Triblock Copolymers and Miktoarm Star Copolymers Consisting of Maltoheptaose and Polystyrene. Macromolecules, 2015, 48, 1509-1517.	2.2	51

#	Article	IF	CITATIONS
127	Synthesis of Homopolymers, Diblock Copolymers, and Multiblock Polymers by Organocatalyzed Group Transfer Polymerization of Various Acrylate Monomers. Macromolecules, 2015, 48, 511-519.	2.2	40
128	Luminescent Coordination Glass: Remarkable Morphological Strategy for Assembled Eu(III) Complexes. Inorganic Chemistry, 2015, 54, 4364-4370.	1.9	42
129	Synthesis and thermoresponsive properties of four-arm star-shaped poly(N-isopropylacrylamide)s bearing covalent and non-covalent cores. Polymer Chemistry, 2015, 6, 3608-3616.	1.9	26
130	Controlled/Living Ring-Opening Polymerization of Glycidylamine Derivatives Using <i>t</i> -Bu-P ₄ /Alcohol Initiating System Leading to Polyethers with Pendant Primary, Secondary, and Tertiary Amino Groups. Macromolecules, 2015, 48, 3217-3229.	2.2	40
131	B(C ₆ F ₅) ₃ -catalyzed group transfer polymerization of alkyl methacrylates with dimethylphenylsilane through in situ formation of silyl ketene acetal by B(C ₆ F ₅) ₃ -catalyzed 1,4-hydrosilylation of methacrylate monomer. Polymer Chemistry. 2015. 6, 3502-3511.	1.9	21
132	Group Transfer Polymerization of Acrylic Monomers. , 2015, , 451-494.		2
133	Complex Thin Film Morphologies of Poly(<i>n</i> -hexyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 507 Td (is Macromolecules, 2015, 48, 5816-5833.	socyanate 2.2)(5k,10k)â€ ⁶ P 16
134	Rod–coil type miktoarm star copolymers consisting of polyfluorene and polylactide: precise synthesis and structure–morphology relationship. Polymer Chemistry, 2015, 6, 6959-6972.	1.9	11
135	Synthesis of AB block and A ₂ B ₂ and A ₃ B ₃ miktoarm star-shaped copolymers using ω-end-functionalized poly(methyl methacrylate) with a hydroxyl group prepared by organocatalyzed group transfer polymerization. Polymer Chemistry, 2015, 6, 7841-7850.	1.9	9
136	Organic acids as efficient catalysts for group transfer polymerization of N,N-disubstituted acrylamide with silyl ketene acetal: polymerization mechanism and synthesis of diblock copolymers. Polymer Chemistry, 2015, 6, 6845-6856.	1.9	18
137	Synthesis of end-functionalized poly(methyl methacrylate) by organocatalyzed group transfer polymerization using functional silyl ketene acetals and α-phenylacrylates. Polymer Chemistry, 2015, 6, 1830-1837.	1.9	20
138	Poly(cyclic olefin)s. , 2015, , 1677-1683.		0
139	Organocatalytic Polymerization. , 2015, , 1485-1497.		Ο
140	Heat Storage Material without Phase-change for Micro and Nano Satellite. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2014, 12, Po_4_1-Po_4_5.	0.1	0
141	Poly(cyclic olefin)s. , 2014, , 1-8.		1
142	B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization of <i>n</i> -Butyl Acrylate with Hydrosilane through In Situ Formation of Initiator by 1,4-Hydrosilylation of <i>n</i> -Butyl Acrylate. ACS Macro Letters, 2014, 3, 1015-1019.	2.3	24
143	Precise synthesis of a rod-coil type miktoarm star copolymer containing poly(n-hexyl isocyanate) and aliphatic polyester. Polymer Chemistry, 2014, 5, 588-599.	1.9	18
144	<i>Bis</i> (4â€nitrophenyl) phosphate as an efficient organocatalyst for ringâ€opening polymerization of βâ€butyrolactone leading to endâ€functionalized and diblock polyesters. Journal of Polymer Science Part A, 2014, 52, 2032-2039.	2.5	31

#	Article	IF	CITATIONS
145	Hierarchical Structures in Thin Films of Miktoarm Star Polymers: Poly(<i>n</i> -hexyl) Tj ETQq1 1 0.784314 rgBT /	Overlock	10_{32}^{Tf} 50 742
146	Synthesis of 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-armed star-shaped poly(styrene oxide) Ru(<scp>ii</scp>) complexes by a click-to-chelate approach. Polymer Chemistry, 2014, 5, 4993-5001.	1.9	12
147	Stereoblock-like Brush Copolymers Consisting of Poly(<scp>l</scp> -lactide) and Poly(<scp>d</scp> -lactide) Side Chains along Poly(norbornene) Backbone: Synthesis, Stereocomplex Formation, and Structure–Property Relationship. Macromolecules, 2014, 47, 7118-7128.	2.2	46
148	Thermoresponsive properties of 3-, 4-, 6-, and 12-armed star-shaped poly[2-(dimethylamino)ethyl methacrylate]s prepared by core-first group transfer polymerization. Polymer Chemistry, 2014, 5, 4701-4709.	1.9	32
149	Synthesis of water-soluble polyisocyanates with the oligo(ethylene glycol) side-chain as new thermoresponsive polymers. Polymer Chemistry, 2014, 5, 1057-1062.	1.9	19
150	Synthesis of α-, ω-, and α,ω-End-Functionalized Poly(<i>n</i> -butyl acrylate)s by Organocatalytic Group Transfer Polymerization Using Functional Initiator and Terminator. Macromolecules, 2014, 47, 5514-5525.	2.2	35
151	A Model Chiral Graft Copolymer Demonstrates Evidence of the Transmission of Stereochemical Information from the Side Chain to the Main Chain on a Nanometer Scale. Macromolecules, 2014, 47, 2796-2802.	2.2	18
152	Synthesis and Characterization of Aminoporphyrinâ€Endâ€Functionalized Poly(<i>N</i> â€isopropylacrylamide) with Photodynamic and Thermoresponsive Effects. Chemistry - an Asian Journal, 2014, 9, 1379-1387.	1.7	13
153	Binaphthol-derived phosphoric acids as efficient chiral organocatalysts for the enantiomer-selective polymerization of rac-lactide. Chemical Communications, 2014, 50, 2883-2885.	2.2	67
154	Synthesis of Linear, Cyclic, Figure-Eight-Shaped, and Tadpole-Shaped Amphiphilic Block Copolyethers via <i>t</i> -Bu-P ₄ -Catalyzed Ring-Opening Polymerization of Hydrophilic and Hydrophobic Glycidyl Ethers. Macromolecules, 2014, 47, 2853-2863.	2.2	75
155	High-Performance Nonvolatile Organic Transistor Memory Devices Using the Electrets of Semiconducting Blends. ACS Applied Materials & Interfaces, 2014, 6, 12780-12788.	4.0	71
156	Diphenyl phosphate/4-dimethylaminopyridine as an efficient binary organocatalyst system for controlled/living ring-opening polymerization of <scp>L</scp> -lactide leading to diblock and end-functionalized poly(<scp>L</scp> -lactide)s. Journal of Polymer Science Part A, 2014, 52, 1047-1054.	2.5	53
157	Synthesis of star poly(N-isopropylacrylamide) with end-group of zinc-porphyrin via ATRP and its photocatalytic activity under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 283, 38-44.	2.0	18
158	Synthesis of endâ€functionalized poly(<i>N</i> â€isopropyl acrylamide) with zinc porphyrin and its photocatalytic activity under visible light. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
159	Rod-Like Amphiphile of Diblock Polyisocyanate Leading to Cylindrical Micelle and Spherical Vesicle in Water. Macromolecules, 2014, 47, 1699-1704.	2.2	21
160	Organocatalytic Polymerization. , 2014, , 1-14.		1
161	Grazing Incidence Small-Angle X-ray Scattering Studies of the Thin Film Morphologies of Miktoarm Crystalline Star Polymers. Science of Advanced Materials, 2014, 6, 2526-2531.	0.1	3
162	F117 Heat Storage and Release Tests of Heat Storage Material with Crystal Transformation. The Proceedings of the Thermal Engineering Conference, 2014, 2014, _F117-1F117-2	0.0	0

#	Article	IF	CITATIONS
163	Synthesis and characterization of Eu(III) complexes of modified cellulose and poly(N-isopropylacrylamide). Carbohydrate Polymers, 2013, 94, 77-81.	5.1	46
164	Synthesis and Stereocomplex Formation of Star-Shaped Stereoblock Polylactides Consisting of Poly(<scp>l</scp> -lactide) and Poly(<scp>d</scp> -lactide) Arms. Macromolecules, 2013, 46, 8509-8518.	2.2	103
165	Synthesis and characterization of novel thermoresponsive fluorescence complexes based on copolymers with rare earth ions. Optical Materials, 2013, 35, 2250-2256.	1.7	17
166	Synthesis of miktoarm star copolymer Ru(II) complexes by click-to-chelate approach. Polymer Journal, 2013, 45, 216-225.	1.3	20
167	Synthesis of block and endâ€functionalized polyesters by triflimideâ€catalyzed ringâ€opening polymerization of εâ€caprolactone, 1,5â€dioxepanâ€2â€one, and rac â€lactide. Journal of Polymer Science Part A 2013, 51, 2455-2463.	2.5	36
168	Synthesis of Star- and Figure-Eight-Shaped Polyethers by <i>t</i> Bu-P ₄ -Catalyzed Ring-Opening Polymerization of Butylene Oxide. Macromolecules, 2013, 46, 3841-3849.	2.2	56
169	Recent progress in organocatalytic group transfer polymerization. Polymer Chemistry, 2013, 4, 4278.	1.9	100
170	Diphenyl Phosphate as an Efficient Acidic Organocatalyst for Controlled/Living Ring-Opening Polymerization of Trimethylene Carbonates Leading to Block, End-Functionalized, and Macrocyclic Polycarbonates. Macromolecules, 2013, 46, 1772-1782.	2.2	139
171	Synthesis of Helical Poly(phenylacetylene)s with Amide Linkage Bearing <scp>l</scp> -Phenylalanine and <scp>l</scp> -Phenylglycine Ethyl Ester Pendants and Their Applications as Chiral Stationary Phases for HPLC. Macromolecules, 2013, 46, 8406-8415.	2.2	96
172	Synthesis, Self-Assembly, and Thermal Caramelization of Maltoheptaose-Conjugated Polycaprolactones Leading to Spherical, Cylindrical, and Lamellar Morphologies. Macromolecules, 2013, 46, 8932-8940.	2.2	52
173	Sub-10 nm Nano-Organization in AB ₂ - and AB ₃ -Type Miktoarm Star Copolymers Consisting of Maltoheptaose and Polycaprolactone. Macromolecules, 2013, 46, 1461-1469.	2.2	90
174	Influence of stereoregularity and linkage groups on chiral recognition of poly(phenylacetylene) derivatives bearing <scp>L</scp> â€leucine ethyl ester pendants as chiral stationary phases for HPLC. Journal of Polymer Science Part A, 2013, 51, 2271-2278.	2.5	43
175	Emulsified Phosphatidylserine, Simple and Effective Peptide Carrier for Induction of Potent Epitope-Specific T Cell Responses. PLoS ONE, 2013, 8, e60068.	1.1	24
176	CHIRAL RECOGNITION OF HELICAL POLY(PHENYLACETYLENE) DERIVATIVES BEARING L-AMINO ACID ETHYL ESTER PENDANTS. Acta Polymerica Sinica, 2013, 013, 811-816.	0.0	2
177	Organocatalytic Ring-Opening Polymerization of Cyclic Esters, Cyclic Carbonates, and Epoxides. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 706-715.	0.0	5
178	D131 Storage of Heat of Heat Storage Material with Crystal Transformation. The Proceedings of the Thermal Engineering Conference, 2013, 2013, 115-116.	0.0	0
179	10 nm Scale Cylinder–Cubic Phase Transition Induced by Caramelization in Sugar-Based Block Copolymers. ACS Macro Letters, 2012, 1, 1379-1382.	2.3	55
180	Colorimetric Detection of Anions in Aqueous Solution Using Poly(phenylacetylene) with Sulfonamide Receptors Activated by Electron Withdrawing Group. Macromolecules, 2012, 45, 8221-8227.	2.2	56

#	Article	IF	CITATIONS
181	Fluorescence Turn-On Sensing of Anions Based on Disassembly Process of Urea-Functionalized Poly(phenylenebutadiynylene) Aggregates. Macromolecules, 2012, 45, 4122-4127.	2.2	30
182	"Helicity Inversion― Linkage Effects of Chiral Poly(<i>n</i> -hexyl isocyanate)s. Macromolecules, 2012, 45, 8961-8969.	2.2	20
183	Advanced Polymer Particles. International Journal of Polymer Science, 2012, 2012, 1-2.	1.2	0
184	Synthesis of Hyperbranched Polymer Using Slow Monomer Addition Method. International Journal of Polymer Science, 2012, 2012, 1-8.	1.2	12
185	Synthesis and conformation effects of poly(phenylacetylene)s having chiral and racemic polylactide pendants. Polymer International, 2012, 61, 1158-1162.	1.6	6
186	Synthesis of endâ€functionalized polyethers by phosphazene baseâ€catalyzed ringâ€opening polymerization of 1,2â€butylene oxide and glycidyl ether. Journal of Polymer Science Part A, 2012, 50, 1941-1952.	2.5	76
187	Synthesis of syndiotacticâ€rich starâ€shaped poly(methyl methacrylate) by coreâ€first group transfer polymerization using <i>N</i> â€{trimethylsilyl)bis(trifluoromethanesulfonyl)imide. Journal of Polymer Science Part A, 2012, 50, 3277-3285.	2.5	21
188	Controlled polymerization of methyl acrylate for highâ€molecularâ€weight polymers by pentafluorophenylbis(triflyl)methaneâ€promoted group transfer polymerization using triisopropylsilyl ketene acetal. Journal of Polymer Science Part A, 2012, 50, 3560-3566.	2.5	35
189	Precise Synthesis of Clickable Poly(<i>n</i> -hexyl isocyanate). Macromolecules, 2012, 45, 3677-3686.	2.2	22
190	Effect of Counter Anions on Kinetics and Stereoregularity for the Strong BrÃ,nsted Acidâ€Promoted Group Transfer Polymerization of <i>N</i> , <i>N</i> â€Đimethylacrylamide. Macromolecular Chemistry and Physics, 2012, 213, 1604-1611.	1.1	19
191	Wellâ€Defined Functional Linear Aliphatic Diblock Copolyethers: A Versatile Linear Aliphatic Polyether Platform for Selective Functionalizations and Various Nanostructures. Advanced Functional Materials, 2012, 22, 5194-5208.	7.8	43
192	Synthesis of star-shaped poly(N-isopropylacrylamide) via atom transfer radical polymerization and its photocatalytic oxidation of Rhodamine B. Macromolecular Research, 2012, 20, 508-514.	1.0	20
193	SYNTHESIS AND CHARACTERIZATION OF OPTICALLY ACTIVE POLY(PHENYLACETYLENE) WITH POLYLACTIDE SIDE CHAINS. Acta Polymerica Sinica, 2012, 012, 365-373.	0.0	0
194	A hydrophilic unimolecular nanocapsule with cyclodextrin moieties in the core: chemically triggered on-demand release and pH-response. Soft Matter, 2011, 7, 6422.	1.2	9
195	Diphenyl Phosphate as an Efficient Cationic Organocatalyst for Controlled/Living Ring-Opening Polymerization of δ-Valerolactone and ε-Caprolactone. Macromolecules, 2011, 44, 1999-2005.	2.2	272
196	Strict Size Specificity in Colorimetric Anion Detection Based on Poly(phenylacetylene) Receptor Bearing Second Generation Lysine Dendrons. Macromolecules, 2011, 44, 4249-4257.	2.2	48
197	Synthesis, Characterization, and Lectin Recognition of Hyperbranched Polysaccharide Obtained from 1,6-Anhydro- <scp>d</scp> -hexofuranose. Biomacromolecules, 2011, 12, 1891-1899.	2.6	25
198	Organic Superbase as an Efficient Catalyst for Group Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2011, 44, 4641-4647.	2.2	73

#	Article	IF	CITATIONS
199	Synthesis of end-functionalized poly(N-isopropylacrylamide) with group of asymmetrical phthalocyanine via atom transfer radical polymerization and its photocatalytic oxidation of Rhodamine B. Polymer Chemistry, 2011, 2, 2590.	1.9	25
200	Synthesis and characterization of well-defined thermo- and light-responsive diblock copolymers by atom transfer radical polymerization and click chemistry. Polymer Chemistry, 2011, 2, 2068.	1.9	25
201	Synthesis of High Molecular Weight and End-Functionalized Poly(styrene oxide) by Living Ring-Opening Polymerization of Styrene Oxide Using the Alcohol/Phosphazene Base Initiating System. Macromolecules, 2011, 44, 9099-9107.	2.2	72
202	Core-First Synthesis of Three-, Four-, and Six-Armed Star-Shaped Poly(methyl methacrylate)s by Group Transfer Polymerization Using Phosphazene Base. Macromolecules, 2011, 44, 9091-9098.	2.2	65
203	Synthesis of a novel one-handed helical poly(phenylacetylene) bearing poly(l-lactide) side chains. European Polymer Journal, 2011, 47, 1923-1930.	2.6	13
204	Selective synthesis of 1,6-anhydro-β-d-mannopyranose and -mannofuranose using microwave-assisted heating. Carbohydrate Research, 2011, 346, 1747-1751.	1.1	4
205	Synthesis and property study on Eu(III) complexes of modified poly(N-isopropylacrylamide). Journal of Materials Science, 2011, 46, 6396-6401.	1.7	6
206	Chemo-enzymatic synthesis of polyhydroxyalkanoate (PHA) incorporating 2-hydroxybutyrate by wild-type class I PHA synthase from Ralstonia eutropha. Applied Microbiology and Biotechnology, 2011, 92, 509-517.	1.7	42
207	Syntheses of 3-arm and 4-arm star-branched polystyrene Ru(II) complexes by the click-to-chelate approach. Journal of Polymer Science Part A, 2011, 49, 746-753.	2.5	29
208	Synthesis of novel hyperbranched polymer through cationic ringâ€opening multibranching polymerization of 2â€hydroxymethyloxetane. Journal of Polymer Science Part A, 2011, 49, 2353-2365.	2.5	16
209	Oneâ€pot synthesis of polyrotaxane by clipping and cyclopolymerization of α,ï‰â€diethynyl isophthalamide with pyridiniumdicarboxamide chloride. Journal of Polymer Science Part A, 2011, 49, 3184-3192.	2.5	14
210	Synthesis of various endâ€functionalized polyesters by controlled/living ringâ€opening polymerization of lactones using pentafluorophenylbis(triflyl)methane. Journal of Polymer Science Part A, 2011, 49, 3769-3777.	2.5	23
211	Biosynthesis of a lactate (LA)-based polyester with a 96 mol% LA fraction and its application to stereocomplex formation. Polymer Degradation and Stability, 2011, 96, 499-504.	2.7	50
212	Guest release and solution behavior of a hydrogen-bonding physical micelle during chemoresponsive shell disruption. Polymer, 2011, 52, 3405-3412.	1.8	4
213	Formation of Anhydrosugars from Polysaccharides in Ionic Liquids by Microwave Irradiation. ACS Symposium Series, 2010, , 145-154.	0.5	0
214	Host–guest complexationâ€ŧriggered chiroptical change of poly(phenylacetylene)s bearing binaphthocrown ether moieties on the main chain. Journal of Polymer Science Part A, 2010, 48, 1197-1206.	2.5	10
215	Pendant structure governed anion sensing property for sulfonamideâ€functionalized poly(phenylacetylene)s bearing various αâ€amino acids. Journal of Polymer Science Part A, 2010, 48, 1683-1689.	2.5	25
216	Precise synthesis of poly(1-adamantyl methacrylate) by atom transfer radical polymerization. Polymer Journal, 2010, 42, 626-631.	1.3	20

#	Article	IF	CITATIONS
217	Hyperbranched 5,6-glucan as reducing sugar ball. Polymer Chemistry, 2010, 1, 82-92.	1.9	13
218	Controlled/Living Ring-Opening Polymerization of δ-Valerolactone Using Triflylimide as an Efficient Cationic Organocatalyst. Macromolecules, 2010, 43, 7090-7094.	2.2	81
219	Efficient Colorimetric Anion Detection Based on Positive Allosteric System of Urea-Functionalized Poly(phenylacetylene) Receptor. Macromolecules, 2010, 43, 7406-7411.	2.2	71
220	Group Transfer Polymerization of N,N-Dimethylacrylamide Using Nobel Efficient System Consisting of Dialkylamino Silyl Enol Ether as an Initiator and Strong BrÃ,nsted Acid as an Organocatalyst. Macromolecules, 2010, 43, 5589-5594.	2.2	49
221	Reactions of excited-state benzophenone ketyl radical in a room-temperature ionic liquid. Physical Chemistry Chemical Physics, 2010, 12, 1963.	1.3	15
222	Photoinduced <i>in situ</i> formation of various Fâ€actin assemblies with a photoresponsive polycation. Journal of Biomedical Materials Research - Part A, 2009, 89A, 424-431.	2.1	4
223	Poly(<i>N</i> â€hydroxyethylacrylamide) Prepared by Atom Transfer Radical Polymerization as a Nonionic, Waterâ€6oluble, and Hydrolysisâ€Resistant Polymer and/or Segment of Block Copolymer with a Wellâ€Đefined Molecular Weight. Macromolecular Chemistry and Physics, 2009, 210, 349-358.	1.1	34
224	Structural effect of a series of block copolymers consisting of poly(N-isopropylacrylamide) and poly(N-hydroxyethylacrylamide) on thermoresponsive behavior. Reactive and Functional Polymers, 2009, 69, 463-469.	2.0	25
225	Control of thermoresponsive property of urea endâ€functionalized poly(<i>N</i> â€isopropylacrylamide) based on the hydrogen bondâ€assisted selfâ€assembly in water. Journal of Polymer Science Part A, 2009, 47, 6259-6268.	2.5	20
226	LCSTâ€ŧype liquid–liquid and liquid–solid phase transition behaviors of hyperbranched polyglycerol bearing imidazolium salt. Journal of Polymer Science Part A, 2009, 47, 7032-7042.	2.5	20
227	Formation kinetics of levoglucosan from glucose in high temperature water. Chemical Engineering Journal, 2009, 153, 170-174.	6.6	15
228	Optical and Chiroptical Output of Anion Recognition Event Using Clustered Sulfonamide Groups Organized on Poly(phenylacetylene) Backbone. Macromolecules, 2009, 42, 3892-3897.	2.2	41
229	Strong BrÃ,nsted Acid as a Highly Efficient Promoter for Group Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2009, 42, 8747-8750.	2.2	65
230	Efficient Anion Recognition Property of Three Dimensionally Clustered Amide Groups Organized on a Poly(phenylacetylene) Backbone. Macromolecules, 2009, 42, 1476-1481.	2.2	34
231	Chemo-Enzymatic Synthesis of Poly(lactate- <i>co</i> -(3-hydroxybutyrate)) by a Lactate-Polymerizing Enzyme. Macromolecules, 2009, 42, 1985-1989.	2.2	40
232	Synthesis of Well-Defined Macrocyclic Poly(δ-valerolactone) by "Click Cyclization― Macromolecules, 2009, 42, 5091-5096.	2.2	94
233	Unimolecular micelles based on hyperbranched polycarbohydrate cores. Soft Matter, 2009, 5, 1972.	1.2	74
234	Effect of the Pendant Structure on Anion Signaling Property of Poly(phenylacetylene)s Conjugated to α-Amino Acids through Urea Groups. Macromolecules, 2009, 42, 4430-4435.	2.2	36

#	Article	IF	CITATIONS
235	Synthesis, thermomorphic characteristics, and fluorescent properties of poly[2,7-(9,9-dihexylfluorene)]-block-poly(N-isopropylacrylamide)-block-poly(N-hydroxyethylacrylamide) rod-coil-coil triblock copolymers. Soft Matter, 2009, 5, 3761.	1.2	55
236	Sizeâ€Selective Encapsulation Property of Unimolecular Reverse Micelle Consisting of Hyperbranched <scp>D</scp> â€Glucan Core and <scp>L</scp> â€Leucine Ethyl Ether Shell. Macromolecular Symposia, 2009, 279, 145-150.	0.4	8
237	Formation of Anhydroglucose in Ionic Liquids by Microwave Heating—Temperature and Chloride Ion Effects—. Chemistry Letters, 2009, 38, 1178-1179.	0.7	5
238	Kinetic Salt Effects on an Ionic Reaction in Ionic Liquid/Methanol Mixtures —Viscosity and Coulombic Screening Effects—. Chemistry Letters, 2009, 38, 236-237.	0.7	11
239	Vinyl addition polymerization of norbornene using cyclopentadienylzirconium trichloride activated by isobutylâ€modified methylaluminoxane. Journal of Polymer Science Part A, 2008, 46, 1185-1191.	2.5	12
240	Copolymerization of ethylene and norbornene using cyclopentadienylzirconium trichloride activated by isobutylâ€modified methylaluminoxane. Journal of Polymer Science Part A, 2008, 46, 7411-7418.	2.5	13
241	A Versatile Method for Adjusting Thermoresponsivity: Synthesis and â€~Click' Reaction of an Azido Endâ€Functionalized Poly(<i>Nâ€</i> isopropylacrylamide). Macromolecular Rapid Communications, 2008, 29, 1126-1133.	2.0	72
242	Size‧pecific, Colorimetric Detection of Counteranions by Using Helical Poly(phenylacetylene) Conjugated to <scp>L</scp> ‣eucine Groups through Urea Acceptors. Chemistry - A European Journal, 2008, 14, 10259-10266.	1.7	60
243	Thermochemical transformation of glucose to 1,6-anhydroglucose in high-temperature steam. Carbohydrate Research, 2008, 343, 848-854.	1.1	33
244	Chiroptical switching system based on the host–guest interaction between metal cations and poly(phenylacetylene)s bearing polycarbohydrate ionophore. European Polymer Journal, 2008, 44, 2971-2979.	2.6	23
245	Reactions of solvated electrons with imidazolium cations in ionic liquids. Radiation Physics and Chemistry, 2008, 77, 1239-1243.	1.4	53
246	Synthesis, Structure, and Characteristics of Hyperbranched Polyterpene Alcohols. Macromolecules, 2008, 41, 5265-5271.	2.2	16
247	Enantiomer-Selective Radical Polymerization of Bis(4-vinylbenzoate)s with Chiral Atom Transfer Radical Polymerization Initiating Systems. Macromolecules, 2007, 40, 9272-9278.	2.2	23
248	Synthesis, Characterization, and Functionalization of Hyperbranched Poly(3,4-epoxycyclohexanemethanol). Macromolecules, 2007, 40, 9313-9321.	2.2	16
249	Chiroptical and Lectin Recognition Properties of Glycoconjugated Poly(phenylacetylene)s Featuring Variable Saccharide Functionalities. Macromolecules, 2007, 40, 8930-8937.	2.2	55
250	Synthesis of Hyperbranched Carbohydrate Polymers by Ring-Opening Multibranching Polymerization of Anhydro Sugar. Macromolecular Bioscience, 2007, 7, 999-1009.	2.1	30
251	Encapsulation–release property of amphiphilic hyperbranched d-glucan as a unimolecular reverse micelle. Polymer, 2007, 48, 1237-1244.	1.8	44
252	A unimolecular nanocapsule: Encapsulation property of amphiphilic polymer based on hyperbranched polythreitol. Polymer, 2007, 48, 4683-4690.	1.8	57

#	Article	IF	CITATIONS
253	Thermoresponsive Onâ~'Off Switching of Chiroptical Property Induced in Poly(4â€~-ethynylbenzo-15-crown-5)/l±-Amino Acid System. Macromolecules, 2006, 39, 4032-4037.	2.2	47
254	Thermoresponsive Property Controlled by End-Functionalization of Poly(N-isopropylacrylamide) with Phenyl, Biphenyl, and Triphenyl Groups. Polymer Journal, 2006, 38, 306-310.	1.3	36
255	Chromatographic Application of 3,4-Di-O-alkyl-(1→6)-2,5-anhydro-D-glucitol for Separation of Alkali and Alkaline Earth Metal Ions. Polymer Journal, 2006, 38, 490-494.	1.3	0
256	Polystyrene Microgel Amphiphiles with Maltohexaose. Synthesis, Characterization, and Potential Applications. Biomacromolecules, 2006, 7, 1496-1501.	2.6	9
257	Synthesis, Inversion, and Chiral Discrimination of Helical Polymers Based on the Host-guest Complexation. Kobunshi Ronbunshu, 2006, 63, 315-324.	0.2	1
258	Glycoconjugated polymer: Synthesis and characterization of poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Journal of Polymer Science Part A, 2006, 44, 3978-3985.	Td (saccha 2.5	aride)-block- 15
259	End-functionalization of polystyrene by malto-oligosaccharide generating aggregation-tunable polymeric reverse micelle. Journal of Polymer Science Part A, 2006, 44, 4864-4879.	2.5	25
260	Chiral discrimination of a helically organized crown ether array parallel to the helix axis of polyisocyanate. Journal of Polymer Science Part A, 2006, 44, 325-334.	2.5	27
261	Synthesis of unimolecular reversed micelle consisting of a poly(L-lactide) shell and hyperbranchedD-mannan core. Journal of Polymer Science Part A, 2006, 44, 406-413.	2.5	47
262	Synthesis and thermoresponsive property of end-functionalized poly(N-isopropylacrylamide) with pyrenyl group. Journal of Polymer Science Part A, 2006, 44, 1117-1124.	2.5	117
263	Synthesis of well-defined syndiotactic poly(methyl methacrylate) with low-temperature atom transfer radical polymerization in fluoroalcohol. Journal of Polymer Science Part A, 2006, 44, 1436-1446.	2.5	56
264	Synthesis of polystyrene microgel with glucose as hydrophilic segment via controlled free-radical polymerization. Polymer, 2006, 47, 2269-2273.	1.8	18
265	Synthesis and Photocrosslinking Reaction of N-Allylcarbamoylmethyl Cellulose Leading to Hydrogel. Polymer Bulletin, 2006, 56, 137-143.	1.7	9
266	Preparation and optical properties of reverse saturable absorption polymer with alkoxy phthalocyanine Pb. , 2006, 6028, 296.		0
267	Synthesis and Characterization of Cellulose Carbamates Having α-Amino Acid Moieties. Polymer Bulletin, 2005, 55, 317-322.	1.7	7
268	Regio- and stereoselective cyclizations of dianhydro sugar alcohols catalyzed by a chiral (salen)CoIII complex. Carbohydrate Research, 2005, 340, 2677-2681.	1.1	9
269	Synthesis of well-defined AB20-type star polymers with cyclodextrin-core by combination of NMP and ATRP. Journal of Polymer Science Part A, 2005, 43, 4271-4279.	2.5	80
270	Star-shaped polystyrenes with glycoconjugated periphery and interior: Synthesis and entrapment of hydrophilic molecule. Journal of Polymer Science Part A, 2005, 43, 4373-4381.	2.5	10

#	Article	IF	CITATIONS
271	Polymerization of 1,2:5,6-diepithio-3,4-di-O-methyl-D-mannitol, 1,2:5,6-diepithio-3,4-di-O-methyl-L-iditol, and 1,2:5,6-diepithio-3,4-di-O-methyl-allitol using zinc complexes: The regio- and stereoselectivities and asymmetric synthesis of thiosugar polymers. Journal of Polymer Science Part A, 2005, 43, 4118-4125.	2.5	5
272	Metal-cation-induced chiroptical switching for poly(phenylacetylene) bearing a macromolecular ionophore as a graft chain. Journal of Polymer Science Part A, 2005, 43, 5855-5863.	2.5	54
273	Synthesis, Branched Structure, and Solution Property of Hyperbranchedd-Glucan andd-Galactan. Macromolecules, 2005, 38, 4202-4210.	2.2	61
274	Synthesis and Helicity Induction of Poly(phenylacetylene) Derivatives Bearing a Crown Cavity on the Main Chain. Macromolecules, 2005, 38, 9441-9447.	2.2	34
275	Atom Transfer Radical Polymerization of Methyl Methacrylate in Fluoroalcohol:Â Simultaneous Control of Molecular Weight and Tacticity. Macromolecules, 2005, 38, 1041-1043.	2.2	79
276	Synthesis of Hyperbranched Polytetritol by Ring-Opening Multibranching Polymerizations of 2,3-Anhydroerythritol and 2,3-Anhydro-dl-threitol. Macromolecules, 2005, 38, 1648-1654.	2.2	22
277	Enantiomer-selective radical cyclopolymerization ofrac-2,4-pentanediyl dimethacrylate using a ruthenium-mediated chiral atom transfer radical polymerization initiating system. Journal of Polymer Science Part A, 2004, 42, 4563-4569.	2.5	23
278	Cyclopolymerization of Dianhydro Sugar Leading to Novel Carbohydrate Polymers as Macromolecular Ionophores. ChemInform, 2004, 35, no.	0.1	0
279	Cyclopolymerization of dianhydro sugar leading to novel carbohydrate polymers as macromolecular ionophores. Progress in Polymer Science, 2004, 29, 13-43.	11.8	19
280	Helicity Induction of Polyisocyanate with a Crown Cavity on the Main Chain Synthesized by Cyclopolymerization of I±,ω-Diisocyanate. Macromolecules, 2004, 37, 3996-4003.	2.2	47
281	Synthesis of Hyperbranched Carbohydrate Polymer by Ring-Opening Multibranching Polymerization of 1,4-Anhydro-I-threitol. Macromolecules, 2004, 37, 3113-3119.	2.2	26
282	Synthesis of Star-Shaped Polystyrenes with Glucose in the Chain-End and Core. Macromolecular Symposia, 2004, 217, 29-38.	0.4	1
283	Synthesis of Hyperbranched Polysaccharide by Thermally Induced Cationic Polymerization of 1,6-Anhydrohexopyranose. Macromolecular Symposia, 2004, 217, 39-46.	0.4	13
284	Enantiomer-Selective Radical Polymerization of 2,4-Pentanediyl Dimethacrylate Using Chiral Ruthenium Catalyst. Kobunshi Ronbunshu, 2004, 61, 269-274.	0.2	0
285	Glycoconjugated Polymer. 4. Synthesis and Aggregation Property of Well-Defined End-Functionalized Polystyrene with β-Cyclodextrin. Macromolecules, 2003, 36, 3909-3913.	2.2	36
286	Asymmetric Atom Transfer Radical Polymerization: Enantiomer-Selective Cyclopolymerization of rac-2,4-Pentanediyl Dimethacrylate Using Chiral ATRP Initiator. ACS Symposium Series, 2003, , 206-220.	0.5	4
287	A convenient synthesis of functionalized alkoxyamines as initiators for living free radical polymerization. Polymer Bulletin, 2003, 49, 337-340.	1.7	9
288	Glycoconjugated polymer 6. Synthesis of poly[styrene- block -(styrene- graft -amylose)] via potato phosphorylase-catalyzed polymerization. Polymer Bulletin, 2003, 49, 405-410.	1.7	24

#	Article	IF	CITATIONS
289	Enantiomer-Selective Radical Polymerization of rac-2,4-Pentanediyl Dimethacrylate by 2,2'-Azobisisobutyronitrile/Copper(II) Trifluoromethanesulfonate/Chiral Diamine as Asymmetric Reverse Atom Transfer Radical Polymerization Initiating System. Polymer Journal, 2003, 35, 84-87.	1.3	12
290	Synthesis of Hyperbranched Polysaccharide by Thermally Induced Cationic Polymerization of 1,6-Anhydro-β-d-mannopyranose. Macromolecules, 2003, 36, 6364-6370.	2.2	39
291	A Novel Ladder Polymer. Two-Step Polymerization of Oxetanyl Oxirane Leading to a "Fused 15-Crown-4 Polymer―Having a High Li+ⰒBinding Ability. Macromolecules, 2003, 36, 1522-1525.	2.2	8
292	Synthesis of Hyperbranched 2,5-Anhydro-d-glucitol by Proton-Transfer Cyclopolymerization of 1,2:5,6-Dianhydro-d-mannitol. Macromolecules, 2003, 36, 6359-6363.	2.2	24
293	Glycoconjugated Polymer. 5. Synthesis and Characterization of a Seven-Arm Star Polystyrene with a β-Cyclodextrin Core Based on TEMPO-Mediated Living Radical Polymerization. Macromolecules, 2003, 36, 3914-3920.	2.2	62
294	Macromolecular Helicity Induction for Novel Optically Inactive Poly(phenyl isocyanate) Bearing Crown Ether Based on the Hostâ ''Guest Complexation. Macromolecules, 2003, 36, 3709-3713.	2.2	47
295	Synthesis of star-shaped polystyrenes with glucose- and maltohexaose-conjugated core through nitroxide-controlled free-radical polymerization. Macromolecular Symposia, 2002, 181, 95-100.	0.4	3
296	Precision synthesis of(1→6)-α-D-glucopyranan by cationic ring-opening polymerization of 1,6-anhydro-2,3,4-tri-O-allyl-β-D-glucopyranose. Macromolecular Symposia, 2002, 181, 101-106.	0.4	3
297	Glycoconjugated Polymer. 3. Synthesis and Amphiphilic Property of Core-Glycoconjugated Star-Shaped Polystyrene. Macromolecules, 2002, 35, 699-705.	2.2	54
298	Enantiomer-Selective Radical Cyclopolymerization ofrac-2,4-Pentanediyl Dimethacrylate Using ATRP Initiating System with Chiral Amine Ligand. Macromolecules, 2002, 35, 8255-8257.	2.2	34
299	Enantioseparation properties of (1?6)-?-D-glucopyranan and (1?6)-?-D-mannopyranan tris(phenylcarbamate)s as chiral stationary phases in HPLC. Chirality, 2002, 14, 498-502.	1.3	14
300	Bulk cyclopolymerization of 1,2:5,6-diepithio-3,4-di-O-methyl-1,2:5,6-tetradeoxy-D-mannitol with quaternary ammonium salts leading to gel-free thiosugar polymer. Journal of Polymer Science Part A, 2002, 40, 965-970.	2.5	4
301	Enantiomer-selective polymerization of (RS)-(phenoxymethyl)thiirane with diethylzinc/L-amino acid. Journal of Polymer Science Part A, 2002, 40, 3443-3448.	2.5	20
302	Synthesis of amphiphilic triblock copolymer of polystyrene and poly(4-vinylbenzyl glucoside) via TEMPO-mediated living radical polymerization. Polymer, 2002, 43, 4835-4840.	1.8	56
303	Glycoconjugated polymer. I. Synthesis and characterization of amphiphilic polystyrenes with glucose, maltose, and maltohexaose as hydrophilic segments. Journal of Polymer Science Part A, 2001, 39, 4061-4067.	2.5	15
304	Glycoconjugated Polymer II. Synthesis of Polystyrene-block-poly(4-vinylbenzyl glucoside) and Polystyrene-block-poly(4-vinylbenzyl maltohexaoside) via 2,2,6,6-Tetramethylpiperidine-1-oxyl-Mediated Living Radical Polymerization Polymer Journal, 2001, 33, 939-945.	1.3	25
305	Chirality Induction in Cyclopolymerization XVI. Synthesis of Optically Active Poly (methyl) Tj ETQq1 1 0.784314 Having Chiral Pentanediol Polymer Journal, 2001, 33, 946-951.	rgBT /Ove 1.3	rlock 10 Tf 5 2
306	Synthesis of a novel polymeric carbohydrate via regio- and stereoselective cyclopolymerization of 1,2:5,6-dianhydrohexitol. Macromolecular Symposia, 2000, 157, 13-20.	0.4	5

#	Article	IF	CITATIONS
307	Ring-Opening and Ring-Forming Polymerization of 1,2:5,6:9,10-Triepoxydecane Leading to a Highly Regioselective Polymer Consisting of Octahydrobifuranyl Unit. Macromolecules, 2000, 33, 246-247.	2.2	6
308	Cyclopolymerization of 1,2:5,6-Diepithio-3,4- di-O-methyl-1,2,5,6-tetradeoxy-d-mannitol and -l-iditol Leading to a Novel Thiosugar Polymer. Macromolecules, 2000, 33, 5303-5307.	2.2	7
309	Asymmetric cyclization of meso-diepoxides using chiral (salen)Co(III)OAc catalyst forming optically active 1,4-anhydropentitols and 2,5-anhydrohexitols. Tetrahedron: Asymmetry, 1999, 10, 3667-3669.	1.8	20
310	Regio- and stereoselective cyclopolymerization of 1,2 : 4,5-dianhydro-3-O-methyl-xylitol leading to a novel polycarbohydrate of (2→5)-1,4-anhydro-3-O-methyl-pentitol. Macromolecular Rapid Communications, 1999, 20, 55-58.	2.0	8
311	Regio- and Stereoselective Cyclopolymerization of 1,2:5,6-Dianhydroallitol and 1,2:5,6-Dianhydrogalactitol Leading to a Novel Carbohydrate Polymer of (2→6)-1,5-Anhydro-dl-galactitol. Macromolecules, 1999, 32, 5755-5759.	2.2	13
312	Macromolecular Ionophore II. Metal Cation-Binding Property of (1→6)-2,5-Anhydro-D-glucitol. Polymer Journal, 1999, 31, 293-295.	1.3	5
313	Synthesis of (1?6)-2,5-anhydro-D-glucitol through cyclopolymerization of 3,4-di-O-allyl-1,2 : 5,6-dianhydro-D-mannitol and optical resolution ability of its derivative in HPLC. Journal of Polymer Science Part A, 1998, 36, 901-909.	2.5	14
314	Enantioselective permeability of membranes prepared from polyacrylonitrile-graft-(1→6)-2,5-anhydro-d-glucitol. Reactive and Functional Polymers, 1998, 37, 293-298.	2.0	10
315	"Living―Nature in Anionic Cyclopolymerization of 1,2:5,6-Dianhydro-3,4-di-O-methyl-d-mannitol Using the Potassiumtert-Butoxide/18-Crown-6 Initiating System. Macromolecules, 1998, 31, 2889-2893.	2.2	11
316	Precision Polymerization and Polymers I. Polymerizability in Anionic Cyclopolymerization of 1,2:5,6-Dianhydrohexitols Kobunshi Ronbunshu, 1997, 54, 710-715.	0.2	2
317	Cyclopolymerization of (2S,3S,4S,5S)-1,2:5,6-Diepithio-3,4-dimethoxy- hexane Leading to a Novel Polymer with a Cyclic Sulfide Unit Possessing High Ag+- and Cu2+-Binding Characteristics. Macromolecules, 1997, 30, 2802-2804.	2.2	7
318	Cyclopolymerization of 1,2: 5,6-Dianhydrohexitol Leading to A Novel Poly-meric Carbohydrate Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 290-300.	0.0	3
319	Synthesis of end-functionalized (1 → 6)-2,5-anhydro-D-glucitols via anionic cyclopolymerization of 1,2:5,6-dianhydro-3,4-di-O-methyl-D-mannitol for preparing graft copolymers. Macromolecular Rapid Communications, 1997, 18, 1041-1048.	2.0	8
320	Anionic Cyclopolymerization of 1,2:5,6-Dianhydro-3,4-di-O-methyl-l-iditol Leading to (6→1)-2,5-Anhydro-3,4-di-O-methyl-d-glucitol. Macromolecules, 1996, 29, 6681-6684.	2.2	15
321	Regio- and Stereoselectivity in Cyclopolymerization of (2S,5S)-1,2:5,6-Diepoxyhexane. Macromolecules, 1996, 29, 4490-4493.	2.2	5
322	A Novel Polymeric Carbohydrate. Synthesis of (1→6)-2,5-Anhydro-d-glucitol by Regio- and Stereoselective Anionic Cyclopolymerization of 1,2:5,6-Dianhydro-d-mannitol. Macromolecules, 1996, 29, 3447-3452.	2.2	18
323	Lymphocyte activation effect of (1→6)-2, 5-anhydro-d-glucitol and it derivatives with 3,4-di-O-methyl and sulfate groups. International Journal of Biological Macromolecules, 1996, 18, 147-148.	3.6	5
324	Synthesis and Cation-Binding Properties of (1→6)-2,5-Anhydro-D-glucitol with 3,4-Di- <i>O</i> -Pentyl and Decyl Groups by Cyclopolymerization of 1,2:5,6-Dianhydro-D-mannitols. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 325-336.	1.2	15

#	Article	IF	CITATIONS
325	Regio- and Stereoselective Cyclopolymerization of 1,2:5,6-Dranhydro-3,4-di-O-methyl-D-glucitol Leading to Polymers with 2,5-Anhydro-3,4-di-O-methyl-D-mannitol and/or -L-iditol Units. Polymer Journal, 1996, 28, 520-526.	1.3	15
326	Cyclopolymerization. Chirality induction for the synthesis of chiroselective corand/ionophore ligands. Macromolecular Chemistry and Physics, 1995, 196, 2383-2416.	1.1	39
327	Macromolecular ionophores. 1. Chiral recognition properties of poly[(1?6)-2,5-anhydro-D-glucitol] toward racemic amino acid ester. Chirality, 1995, 7, 136-139.	1.3	13
328	Synthesis of Poly[(1→6)-2,5-Anhydro-D-Glucitol] by Cationic Cyclopolymerization of 3,4-Di- <i>O</i> -Allyl-1,2:5,6-Dianhydro-D-Mannitol. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 1007-1018.	1.2	10
329	Regio- and Stereospecificity in Cationic Cyclopolymerization of 1,2:5,6-Dianhydro-D-mannitols and Synthesis of Poly[(1.fwdarw.6)-2,5-anhydro-3,4-di-O-ethyl-D-glucitol]. Macromolecules, 1995, 28, 4062-4066.	2.2	20
330	Synthesis of (1.fwdarw.6)-2,5-Anhydro-3,4-di-O-methyl-D-glucitol via Highly Regio- and Stereospecific Cyclopolymerization of 1,2:5,6-Dianhydro-3,4-di-O-methyl-D-mannitol with Potassium tert-Butoxide. Macromolecules, 1995, 28, 4762-4764.	2.2	25
331	Regio- and Stereoselectivity in Cationic Cyclopolymerizations of 1,2:5,6-Dianhydro-3,4-di-O-methyl-D-mannitol and -L-iditol and the Synthesis of Poly[(1.fwdarw.6)-2,5-anhydro-3,4-di-O-methyl-D-glucitol]. Macromolecules, 1995, 28, 5643-5648.	2.2	29
332	Cyclopolymerization of α,Ω-Diepoxide with Monoepoxy Comonomer. Synthesis and Cation-Binding Property of Copolymers with Dibenzo-19-Crown-6 Units. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 751-759.	1.2	1
333	New macromolecular ionophore: enantioselective membrane transport of racemic amino acid by poly[(1 → 6)-2,5-anhydro-3,4-di-O-methyl-d-glucitol]. Polymer, 1994, 35, 204-206.	1.8	21