Simon L Bullock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2151031/publications.pdf

Version: 2024-02-01

45 papers

5,040 citations

126858 33 h-index 243529 44 g-index

55 all docs 55 docs citations

55 times ranked 5833 citing authors

#	Article	IF	CITATIONS
1	Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2967-76.	3.3	947
2	Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nature Methods, 2016, 13, 852-854.	9.0	370
3	Subcellular mRNA Localization in Animal Cells and Why It Matters. Science, 2009, 326, 1212-1216.	6.0	352
4	<i>In vitro</i> reconstitution of a highly processive recombinant human dynein complex. EMBO Journal, 2014, 33, 1855-1868.	3.5	341
5	Growth and Early Postimplantation Defects in Mice Deficient for the Bromodomain-Containing Protein Brd4. Molecular and Cellular Biology, 2002, 22, 3794-3802.	1.1	279
6	Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature, 2001, 414, 611-616.	13.7	254
7	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
8	Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes and Development, 2009, 23, 1546-1558.	2.7	190
9	The Molecular Phenotype of Heparan Sulfate in theHs2stâ^'/â^' Mutant Mouse. Journal of Biological Chemistry, 2001, 276, 35429-35434.	1.6	155
10	Guidance of Bidirectional Motor Complexes by mRNA Cargoes through Control of Dynein Number and Activity. Current Biology, 2006, 16, 1447-1452.	1.8	117
11	DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1597-E1606.	3 . 3	101
12	Single-molecule assays reveal that RNA localization signals regulate dynein–dynactin copy number on individual transcript cargoes. Nature Cell Biology, 2012, 14, 416-423.	4.6	92
13	A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nature Structural and Molecular Biology, 2010, 17, 703-709.	3. 6	87
14	Lis1 activates dynein motility by modulating its pairing with dynactin. Nature Cell Biology, 2020, 22, 570-578.	4.6	86
15	Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain, 2015, 138, 293-310.	3.7	82
16	Systematic Evaluation of <i>Drosophila</i> CRISPR Tools Reveals Safe and Robust Alternatives to Autonomous Gene Drives in Basic Research. G3: Genes, Genomes, Genetics, 2015, 5, 1493-1502.	0.8	80
17	Lissencephaly-1 is a context-dependent regulator of the human dynein complex. ELife, 2017, 6, .	2.8	80
18	Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein. Genes and Development, 2013, 27, 1233-1246.	2.7	79

#	Article	IF	CITATIONS
19	RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs. ELife, 2018, 7, .	2.8	72
20	Lissencephaly-1 promotes the recruitment of dynein and dynactin to transported mRNAs. Journal of Cell Biology, 2013, 202, 479-494.	2.3	70
21	The Drosophila hairy RNA localization signal modulates the kinetics of cytoplasmic mRNA transport. EMBO Journal, 2003, 22, 2484-2494.	3.5	68
22	Messengers, motors and mysteries: sorting of eukaryotic mRNAs by cytoskeletal transport. Biochemical Society Transactions, 2011, 39, 1161-1165.	1.6	68
23	A stem–loop structure directs <i>oskar</i> mRNA to microtubule minus ends. Rna, 2014, 20, 429-439.	1.6	62
24	Bicaudal-D Regulates Fragile X Mental Retardation Protein Levels, Motility, and Function during Neuronal Morphogenesis. Current Biology, 2010, 20, 1487-1492.	1.8	61
25	SnapShot: Subcellular mRNA Localization. Cell, 2017, 169, 178-178.e1.	13.5	57
26	<i>C9orf72</i> -derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. Science Advances, 2021, 7, .	4.7	57
27	Differential cytoplasmic mRNA localisation adjusts pair-rule transcription factor activity to cytoarchitecture in dipteran evolution. Development (Cambridge), 2004, 131, 4251-4261.	1.2	52
28	A cAMP/PKA/Kinesin-1 Axis Promotes the Axonal Transport of Mitochondria in Aging Drosophila Neurons. Current Biology, 2018, 28, 1265-1272.e4.	1.8	52
29	Bicaudal-D binds clathrin heavy chain to promote its transport and augments synaptic vesicle recycling. EMBO Journal, 2010, 29, 992-1006.	3.5	49
30	A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing. Nature Protocols, 2016, 11, 1711-1723.	5 . 5	49
31	inscuteable mRNA Localization Is Dynein-Dependent and Regulates Apicobasal Polarity and Spindle Length in Drosophila Neuroblasts. Current Biology, 2004, 14, 1950-1956.	1.8	46
32	The influence of dynein processivity control, MAPs, and microtubule ends on directional movement of a localising mRNA. ELife, 2014, 3, e01596.	2.8	46
33	Specific modification of heparan sulphate is required for normal cerebral cortical development. Mechanisms of Development, 2003, 120, 1481-1488.	1.7	45
34	Translocation of mRNAs by molecular motors: Think complex?. Seminars in Cell and Developmental Biology, 2007, 18, 194-201.	2.3	42
35	Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult <i>Drosophila</i> neurons. Journal of Cell Science, 2016, 129, 178-90.	1.2	42
36	Recognition of the bcd mRNA Localization Signal in Drosophila Embryos and Ovaries. Molecular and Cellular Biology, 2005, 25, 1501-1510.	1.1	33

SIMON L BULLOCK

#	Article	IF	CITATIONS
37	Creating Heritable Mutations in Drosophila with CRISPR-Cas9. Methods in Molecular Biology, 2016, 1478, 145-160.	0.4	27
38	Dynein Associates with oskar mRNPs and Is Required For Their Efficient Net Plus-End Localization in Drosophila Oocytes. PLoS ONE, 2013, 8, e80605.	1.1	25
39	Altered dynein-dependent transport in piRNA pathway mutants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9691-9696.	3.3	14
40	The <i>Drosophila</i> MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Development (Cambridge), 2014, 141, 2119-2130.	1.2	12
41	A High-Throughput Cellular Screening Assay for Small-Molecule Inhibitors and Activators of Cytoplasmic Dynein-1-Based Cargo Transport. SLAS Discovery, 2020, 25, 985-999.	1.4	4
42	Cell polarity: Oskar seeks PARtner for a stable relationship. Nature Cell Biology, 2002, 4, E117-E118.	4.6	3
43	Reply: The p.Ser107Leu inBICD2is a mutation †hot spot' causing distal spinal muscular atrophy. Brain, 2015, 138, e392-e392.	3.7	1
44	Meeting report $\hat{a} \in ``Nuclear and cytoplasmic molecular machines at work. Journal of Cell Science, 2020, 133, .$	1.2	1
45	The <i>Drosophila</i> MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Journal of Cell Science, 2014, 127, e1-e1.	1.2	0