
Emilio Lence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2150310/publications.pdf Version: 2024-02-01

EMILIOLENCE

#	Article	IF	CITATIONS
1	Mycobacterium tuberculosis Shikimate Kinase Inhibitors: Design and Simulation Studies of the Catalytic Turnover. Journal of the American Chemical Society, 2013, 135, 12366-12376.	6.6	51
2	Molecular and biochemical insights into the in vivo evolution of AmpC-mediated resistance to ceftolozane/tazobactam during treatment of an MDR Pseudomonas aeruginosa infection. Journal of Antimicrobial Chemotherapy, 2020, 75, 3209-3217.	1.3	26
3	The conformational rigidity of butane-1,2-diacetals as a powerful synthetic tool. Chemical Society Reviews, 2008, 37, 1689.	18.7	22
4	Challenging Antimicrobial Susceptibility and Evolution of Resistance (OXA-681) during Treatment of a Long-Term Nosocomial Infection Caused by a Pseudomonas aeruginosa ST175 Clone. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	22
5	Parallel Solid-Phase Synthesis and Evaluation of Inhibitors of Streptomyces coelicolor Type II Dehydroquinase. Journal of Medicinal Chemistry, 2003, 46, 5735-5744.	2.9	21
6	QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes. Organic and Biomolecular Chemistry, 2018, 16, 4443-4455.	1.5	19
7	Metal-Assisted Ring-Closing/Opening Process of a Chiral Tetrahydroquinazoline. Inorganic Chemistry, 2012, 51, 1278-1293.	1.9	18
8	Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting. Journal of Organic Chemistry, 2018, 83, 13019-13029.	1.7	18
9	Targeting the Motion of Shikimate Kinase: Development of Competitive Inhibitors that Stabilize an Inactive Open Conformation of the Enzyme. Journal of Medicinal Chemistry, 2016, 59, 5471-5487.	2.9	15
10	Characterization of Locally Excited and Chargeâ€Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies. Chemistry - A European Journal, 2020, 26, 15922-15930.	1.7	13
11	Mechanistic insight into the reaction catalysed by bacterial typeÂll dehydroquinases. Biochemical Journal, 2014, 458, 547-557.	1.7	12
12	Chemical Modification of a Dehydratase Enzyme Involved in Bacterial Virulence by an Ammonium Derivative: Evidence of its Active Site Covalent Adduct. Journal of the American Chemical Society, 2015, 137, 9333-9343.	6.6	12
13	Study of the Phosphorylâ€Transfer Mechanism of Shikimate Kinase by NMR Spectroscopy. Chemistry - A European Journal, 2016, 22, 2758-2768.	1.7	12
14	Bicyclic Boronate Î²â€Łactamase Inhibitors: The Present Hope against Deadly Bacterial Pathogens. Advanced Therapeutics, 2021, 4, 2000246.	1.6	12
15	Mechanistic Basis of the Inhibition of Type II Dehydroquinase by (2 <i>S</i>)- and (2 <i>R</i>)-2-Benzyl-3-dehydroquinic Acids. ACS Chemical Biology, 2013, 8, 568-577.	1.6	11
16	A New Pathway for Protein Haptenation by Î²â€Łactams. Chemistry - A European Journal, 2017, 23, 13986-13994.	1.7	11
17	Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Frontiers in Pharmacology, 2019, 10, 1028.	1.6	10
18	Protein Binding of Lapatinib and Its N- and O-Dealkylated Metabolites Interrogated by Fluorescence, Ultrafast Spectroscopy and Molecular Dynamics Simulations. Frontiers in Pharmacology, 2020, 11, 576495.	1.6	10

Emilio Lence

#	Article	IF	CITATIONS
19	6-Halopyridylmethylidene Penicillin-Based Sulfones Efficiently Inactivate the Natural Resistance of <i>Pseudomonas aeruginosa</i> to β-Lactam Antibiotics. Journal of Medicinal Chemistry, 2021, 64, 6310-6328.	2.9	10
20	Structural variety of zinc and copper complexes based on a 2,3-disubstituted 1,2,3,4-tetrahydroquinazoline ligand. Dalton Transactions, 2012, 41, 6998.	1.6	9
21	Mild, aprotic synthesis of 1,2-diacetals. Tetrahedron Letters, 2002, 43, 7917-7918.	0.7	8
22	Insights into substrate binding and catalysis in bacterial typeÂl dehydroquinase. Biochemical Journal, 2014, 462, 415-424.	1.7	8
23	Irreversible covalent modification of type I dehydroquinase with a stable Schiff base. Organic and Biomolecular Chemistry, 2015, 13, 706-716.	1.5	8
24	Discovery of 3H-pyrrolo[2,3-c]quinolines with activity against Mycobacterium tuberculosis by allosteric inhibition of the glutamate-5-kinase enzyme. European Journal of Medicinal Chemistry, 2022, 232, 114206.	2.6	7
25	Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chemical Science, 2017, 8, 2621-2628.	3.7	5
26	Synthesis of rigidified shikimic acid derivatives by ring-closing metathesis to imprint inhibitor efficacy against shikimate kinase enzyme. Organic Chemistry Frontiers, 2019, 6, 2514-2528.	2.3	5
27	Hydroxylammonium derivatives for selective active-site lysine modification in the anti-virulence bacterial target DHQ1 enzyme. Organic Chemistry Frontiers, 2019, 6, 3127-3135.	2.3	4
28	A selective resin for trans-diequatorial-1,2-diols. Tetrahedron Letters, 2009, 50, 1795-1798.	0.7	3
29	Serendipitous formation of 3-tosyl-1,2,3,4-tetrahydroquinazoline. New Journal of Chemistry, 2013, 37, 3043.	1.4	3
30	Freezing the Dynamic Gap for Selectivity: Motionâ€Based Design of Inhibitors of the Shikimate Kinase Enzyme. Chemistry - A European Journal, 2016, 22, 17988-18000.	1.7	3
31	Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117652.	2.0	2
32	Selfâ€Immolation of a Bacterial Dehydratase Enzyme by its Epoxide Product. Chemistry - A European Journal, 2020, 26, 8035-8044.	1.7	2
33	Crambescin C1 Acts as A Possible Substrate of iNOS and eNOS Increasing Nitric Oxide Production and Inducing In Vivo Hypotensive Effect. Frontiers in Pharmacology, 2021, 12, 694639.	1.6	2
34	Molecular Basis of Bicyclic Boronate β-Lactamase Inhibitors of Ultrabroad Efficacy – Insights From Molecular Dynamics Simulation Studies. Frontiers in Microbiology, 2021, 12, 721826.	1.5	2
35	Identification of a common recognition center for a photoactive non-steroidal antiinflammatory drug in serum albumins of different species. Organic Chemistry Frontiers, 2019, 6, 99-109.	2.3	1
36	Mild, Aprotic Synthesis of 1,2-Diacetals ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
37	Frontispiece: Freezing the Dynamic Gap for Selectivity: Motion-Based Design of Inhibitors of the Shikimate Kinase Enzyme. Chemistry - A European Journal, 2016, 22, .	1.7	0