
Letizia Monico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2150229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a multi-method analytical approach based on the combination of synchrotron radiation X-ray micro-analytical techniques and vibrational micro-spectroscopy methods to unveil the causes and mechanism of darkening of "fake-gilded―decorations in a Cimabue painting. Journal of Analytical Atomic Spectrometry, 2022, 37, 114-129.	3.0	10
2	The "Historical Materials BAG― A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility. Molecules, 2022, 27, 1997.	3.8	17
3	Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1â°'xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales. European Physical Journal Plus, 2022, 137, 1.	2.6	5
4	Application of Synchrotron Radiation-Based Micro-Analysis on Cadmium Yellows in Pablo Picasso's <i>Femme</i> . Microscopy and Microanalysis, 2022, 28, 1504-1513.	0.4	6
5	Synchrotron radiation Ca K-edge 2D-XANES spectroscopy for studying the stratigraphic distribution of calcium-based consolidants applied in limestones. Scientific Reports, 2020, 10, 14337.	3.3	6
6	Damages Induced by Synchrotron Radiation-Based X-ray Microanalysis in Chrome Yellow Paints and Related Cr-Compounds: Assessment, Quantification, and Mitigation Strategies. Analytical Chemistry, 2020, 92, 14164-14173.	6.5	22
7	Probing the chemistry of CdS paints in <i>The Scream</i> by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques. Science Advances, 2020, 6, eaay3514.	10.3	41
8	A non-invasive multi-technique investigation of Banqueting House Whitehall Rubens ceiling paintings. Microchemical Journal, 2020, 156, 104797.	4.5	10
9	Disclosing the Binding Medium Effects and the Pigment Solubility in the (Photo)reduction Process of Chrome Yellows (PbCrO ₄ /PbCr _{1–<i>x</i>} S _{<i>x</i>} O ₄). ACS Omega, 2019. 4. 6607-6619.	3.5	17
10	Tracking Metal Oxalates and Carboxylates on Painting Surfaces by Non-invasive Reflection Mid-FTIR Spectroscopy. Cultural Heritage Science, 2019, , 173-193.	0.4	13
11	Chemical Mapping by Macroscopic Xâ€ray Powder Diffraction (MAâ€XRPD) of Van Gogh's <i>Sunflowers</i> : Identification of Areas with Higher Degradation Risk. Angewandte Chemie - International Edition, 2018, 57, 7418-7422.	13.8	28
12	A Roman Egyptian Painting Workshop: Technical Investigation of the Portraits from Tebtunis, Egypt. Archaeometry, 2018, 60, 815-833.	1.3	25
13	Zur Photochemie von Künstlerfarben: Strategien zur Verhinderung von Farbveräderungen in Kunstwerken. Angewandte Chemie, 2018, 130, 7447-7457.	2.0	1
14	Frontispiece: Role of the Relative Humidity and the Cd/Zn Stoichiometry in the Photooxidation Process of Cadmium Yellows (CdS/Cd _{1â°'<i>x</i>} Zn _{<i>x</i>} S) in Oil Paintings. Chemistry - A European Journal, 2018, 24, .	3.3	0
15	Rücktitelbild: Chemical Mapping by Macroscopic Xâ€ray Powder Diffraction (MAâ€XRPD) of Van Gogh's <i>Sunflowers</i> : Identification of Areas with Higher Degradation Risk (Angew. Chem. 25/2018). Angewandte Chemie, 2018, 130, 7656-7656.	2.0	1
16	Chemical Mapping by Macroscopic Xâ€ray Powder Diffraction (MAâ€XRPD) of Van Gogh's <i>Sunflowers</i> : Identification of Areas with Higher Degradation Risk. Angewandte Chemie, 2018, 130, 7540-7544.	2.0	3
17	Photochemistry of Artists' Dyes and Pigments: Towards Better Understanding and Prevention of Colour Change in Works of Art. Angewandte Chemie - International Edition, 2018, 57, 7324-7334.	13.8	42
18	Role of the Relative Humidity and the Cd/Zn Stoichiometry in the Photooxidation Process of Cadmium Yellows (CdS/Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S) in Oil Paintings. Chemistry - A European Journal, 2018, 24, 11584-11593.	3.3	27

LETIZIA MONICO

#	Article	IF	CITATIONS
19	The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials. Journal of Analytical Atomic Spectrometry, 2017, 32, 477-493.	3.0	140
20	Non-Invasive and Non-Destructive Examination of Artistic Pigments, Paints, and Paintings by Means of X-Ray Methods. Topics in Current Chemistry Collections, 2017, , 77-128.	0.5	10
21	Synchrotron-based micro-analyses of artistic materials at ID21, ESRF. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1344-C1344.	0.1	1
22	Non-Invasive and Non-Destructive Examination of Artistic Pigments, Paints, and Paintings by Means of X-Ray Methods. Topics in Current Chemistry, 2016, 374, 81.	5.8	41
23	Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium. Microchemical Journal, 2016, 124, 272-282.	4.5	48
24	Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. Journal of Analytical Atomic Spectrometry, 2015, 30, 613-626.	3.0	40
25	Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light. Journal of Analytical Atomic Spectrometry, 2015, 30, 1500-1510.	3.0	25
26	Evidence for Degradation of the Chrome Yellows in Vanâ€Gogh's <i>Sunflowers</i> : A Study Using Noninvasive Inâ€Situ Methods and Synchrotronâ€Radiationâ€Based Xâ€ray Techniques. Angewandte Chemie - International Edition, 2015, 54, 13923-13927.	13.8	52
27	Raman study of different crystalline forms of PbCrO ₄ and PbCr _{1â[^]x} S _x O ₄ solid solutions for the noninvasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. Journal of Raman Spectroscopy 2014 45 1034-1045	2.5	58
28	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. Part 5. Effects of Nonoriginal Surface Coatings into the Nature and Distribution of Chromium and Sulfur Species in Chrome Yellow Paints. Analytical Chemistry, 2014, 86, 10804-10811.	6.5	32
29	Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 116, 270-280.	3.9	78
30	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 4. Artificial Aging of Model Samples of Co-Precipitates of Lead Chromate and Lead Sulfate. Analytical Chemistry, 2013, 85, 860-867.	6.5	69
31	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 3. Synthesis, Characterization, and Detection of Different Crystal Forms of the Chrome Yellow Pigment. Analytical Chemistry, 2013, 85, 851-859.	6.5	92
32	The Use of Synchrotron Radiation for the Characterization of Artists' Pigments and Paintings. Annual Review of Analytical Chemistry, 2013, 6, 399-425.	5.4	63
33	Nanoscale Investigation of the Degradation Mechanism of a Historical Chrome Yellow Paint by Quantitative Electron Energy Loss spectroscopy Mapping of Chromium Species. Angewandte Chemie - International Edition, 2013, 52, 11360-11363.	13.8	35
34	The Degradation Process of Lead Chromate Yellows in Paintings by Vincent van Gogh. Microscopy and Microanalysis, 2013, 19, 1424-1425.	0.4	2
35	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Synchrotron X-ray Spectromicroscopy and Related Methods. 1. Artificially Aged Model Samples. Analytical Chemistry, 2011, 83, 1214-1223.	6.5	116
36	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Synchrotron X-ray Spectromicroscopy and Related Methods. 2. Original Paint Layer Samples. Analytical Chemistry, 2011, 83, 1224-1231.	6.5	116