Ruibing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2150052/publications.pdf

Version: 2024-02-01

215 papers

8,945 citations

52 h-index 79 g-index

219 all docs

219 docs citations

times ranked

219

9168 citing authors

#	Article	IF	CITATIONS
1	Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chemical Reviews, 2016, 116, 13571-13632.	23.0	452
2	Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nature Communications, 2020, 11 , 2622.	5.8	315
3	Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). Journal of Hazardous Materials, 2016, 309, 107-115.	6.5	170
4	A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials, 2016, 105, 206-221.	5.7	167
5	Supramolecular Polymerizationâ€Induced Nanoassemblies for Selfâ€Augmented Cascade Chemotherapy and Chemodynamic Therapy of Tumor. Angewandte Chemie - International Edition, 2021, 60, 17570-17578.	7.2	150
6	Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chinese Medicine, 2018, 13, 13.	1.6	146
7	SARS-Coronavirus-2 Nsp13 Possesses NTPase and RNA Helicase Activities That Can Be Inhibited by Bismuth Salts. Virologica Sinica, 2020, 35, 321-329.	1.2	145
8	A green to blue fluorescence switch of protonated 2-aminoanthracene upon inclusion in cucurbit[7]uril. Chemical Communications, 2005, , 5867.	2.2	137
9	Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. Journal of Controlled Release, 2017, 254, 44-54.	4.8	129
10	Synthesis and Bioactivity of Guanidiniumâ€Functionalized Pillar[5]arene as a Biofilm Disruptor. Angewandte Chemie - International Edition, 2021, 60, 618-623.	7.2	124
11	A Proresolving Peptide Nanotherapy for Site‧pecific Treatment of Inflammatory Bowel Disease by Regulating Proinflammatory Microenvironment and Gut Microbiota. Advanced Science, 2019, 6, 1900610.	5 . 6	117
12	A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nature Communications, 2018, 9, 2967.	5.8	106
13	Highly Biocompatible Chlorin e6-Loaded Chitosan Nanoparticles for Improved Photodynamic Cancer Therapy. ACS Applied Materials & Diversary: Interfaces, 2018, 10, 9980-9987.	4.0	103
14	pH-Responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale, 2017, 9, 12533-12542.	2.8	102
15	Yeast Microcapsule-Mediated Targeted Delivery of Diverse Nanoparticles for Imaging and Therapy via the Oral Route. Nano Letters, 2017, 17, 1056-1064.	4.5	101
16	Cucurbit[7]uril: an emerging candidate for pharmaceutical excipients. Annals of the New York Academy of Sciences, 2017, 1398, 108-119.	1.8	98
17	Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis. Biomaterials, 2017, 143, 93-108.	5. 7	98
18	Stimuli-responsive nanocarriers constructed from pillar $[\langle i \rangle n \langle i \rangle]$ arene-based supra-amphiphiles. Materials Chemistry Frontiers, 2019, 3, 1973-1993.	3.2	98

#	Article	IF	CITATIONS
19	Cucurbit[7]uril host–guest complexes of the histamine H2-receptor antagonist ranitidine. Organic and Biomolecular Chemistry, 2008, 6, 1955.	1.5	95
20	Phytochemicals from fern species: potential for medicine applications. Phytochemistry Reviews, 2017, 16, 379-440.	3.1	92
21	Structureâ€"Property Correlations of Reactive Oxygen Species-Responsive and Hydrogen Peroxide-Eliminating Materials with Anti-Oxidant and Anti-Inflammatory Activities. Chemistry of Materials, 2017, 29, 8221-8238.	3.2	92
22	Cucurbit[7]uril Mediates the Stereoselective [4+4] Photodimerization of 2-Aminopyridine Hydrochloride in Aqueous Solution. Journal of Organic Chemistry, 2006, 71, 1237-1239.	1.7	89
23	Non-Injection and Low-Temperature Approach to Colloidal Photoluminescent PbS Nanocrystals with Narrow Bandwidth. Journal of Physical Chemistry C, 2009, 113, 2301-2308.	1.5	86
24	Applications of Cucurbit[$\langle i\rangle n\langle i\rangle$]urils ($\langle i\rangle n\langle i\rangle =7$ or 8) in Pharmaceutical Sciences and Complexation of Biomolecules. Israel Journal of Chemistry, 2018, 58, 188-198.	1.0	86
25	Biomedical applications of <i>Aloe vera</i> . Critical Reviews in Food Science and Nutrition, 2019, 59, S244-S256.	5.4	84
26	Supramolecular Induction of Mitochondrial Aggregation and Fusion. Journal of the American Chemical Society, 2020, 142, 16523-16527.	6.6	83
27	Nanomedicine in Action: An Overview of Cancer Nanomedicine on the Market and in Clinical Trials. Journal of Nanomaterials, 2013, 2013, 1-12.	1.5	82
28	Transformable Honeycombâ€Like Nanoassemblies of Carbon Dots for Regulated Multisite Delivery and Enhanced Antitumor Chemoimmunotherapy. Angewandte Chemie - International Edition, 2021, 60, 6581-6592.	7.2	82
29	Host–Guest Interactions Initiated Supramolecular Chitosan Nanogels for Selective Intracellular Drug Delivery. ACS Applied Materials & Drug Delivery. ACS Applied Materials	4.0	79
30	Imaging viscosity and peroxynitrite by a mitochondria-targeting two-photon ratiometric fluorescent probe. Sensors and Actuators B: Chemical, 2018, 276, 238-246.	4.0	78
31	Amelioration of ulcerative colitis <i>via</i> inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics, 2020, 10, 10106-10119.	4.6	77
32	Cucurbit[8]uril/Cucurbit[7]uril Controlled Off/On Fluorescence of the Acridizinium and 9-Aminoacridizinium Cations in Aqueous Solution. Chemistry - A European Journal, 2007, 13, 6468-6473.	1.7	75
33	Developmental and organ-specific toxicity of cucurbit[7]uril: in vivo study on zebrafish models. RSC Advances, 2015, 5, 30067-30074.	1.7	72
34	Inclusion complexes of coumarin in cucurbiturils. Organic and Biomolecular Chemistry, 2009, 7, 2435.	1.5	71
35	Thermodynamic Equilibrium-Driven Formation of Single-Sized Nanocrystals: Reaction Media Tuning CdSe Magic-Sized versus Regular Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 3329-3339.	1.5	71
36	Small-Sized mPEG–PLGA Nanoparticles of Schisantherin A with Sustained Release for Enhanced Brain Uptake and Anti-Parkinsonian Activity. ACS Applied Materials & Diterfaces, 2017, 9, 9516-9527.	4.0	71

#	Article	IF	CITATIONS
37	Modulating the phenotype of host macrophages to enhance osteogenesis in MSC-laden hydrogels: Design of a glucomannan coating material. Biomaterials, 2017, 139, 39-55.	5.7	68
38	Inhibition of C(2)-H/D exchange of a bis(imidazolium) dication upon complexation with cucubit[7]uril. Chemical Communications, 2006, , 2908.	2.2	67
39	Homogeneously-Alloyed CdTeSe Single-Sized Nanocrystals with Bandgap Photoluminescence. Journal of Physical Chemistry C, 2009, 113, 3402-3408.	1.5	67
40	A rapid low-temperature synthetic method leading to large-scale carboxyl graphene. Chemical Engineering Journal, 2014, 236, 471-479.	6.6	66
41	The separation of Th(IV)/U(VI) via selective complexation with graphene oxide. Chemical Engineering Journal, 2015, 271, 147-154.	6.6	65
42	Oxygenâ€Evolving Manganese Ferrite Nanovesicles for Hypoxiaâ€Responsive Drug Delivery and Enhanced Cancer Chemoimmunotherapy. Advanced Functional Materials, 2021, 31, 2008078.	7.8	65
43	In vivo reversal of general anesthesia by cucurbit[7]uril with zebrafish models. RSC Advances, 2015, 5, 63745-63752.	1.7	62
44	Polymeric Nanomedicine with "Lego―Surface Allowing Modular Functionalization and Drug Encapsulation. ACS Applied Materials & Drug Encapsulation. ACS Applied Materials & Drug Encapsulation. ACS Applied Materials & Drug Encapsulation.	4.0	62
45	A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th(IV)/U(VI). Journal of Colloid and Interface Science, 2017, 508, 303-312.	5.0	59
46	Binding Modes of Cucurbit[6]uril and Cucurbit[7]uril with a Tetracationic Bis(viologen) Guest. Journal of Organic Chemistry, 2007, 72, 4539-4542.	1.7	58
47	An eco-friendly in situ activatable antibiotic via cucurbit[8]uril-mediated supramolecular crosslinking of branched polyethylenimine. Chemical Communications, 2017, 53, 5870-5873.	2.2	58
48	Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Angewandte Chemie - International Edition, 2020, 59, 21280-21292.	7.2	58
49	Complexation of clofazimine by macrocyclic cucurbit[7]uril reduced its cardiotoxicity without affecting the antimycobacterial efficacy. Organic and Biomolecular Chemistry, 2016, 14, 7563-7569.	1.5	57
50	A hypoxia responsive nanoassembly for tumor specific oxygenation and enhanced sonodynamic therapy. Biomaterials, 2021, 275, 120822.	5.7	57
51	Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Advanced Materials, 2022, 34, e2107434.	11.1	57
52	In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma. Science Advances, 2022, 8, eabn1805.	4.7	57
53	Competitive Selection of Conformation Chirality of Water-Soluble Pillar[5] arene Induced by Amino Acid Derivatives. Organic Letters, 2020, 22, 2266-2270.	2.4	56
54	Magic-Sized Cd ₃ P ₂ Ilâ^'V Nanoparticles Exhibiting Bandgap Photoemission. Journal of Physical Chemistry C, 2009, 113, 17979-17982.	1.5	54

#	Article	IF	CITATIONS
55	Stabilization of the base-off forms of vitamin B12 and coenzyme B12 by encapsulation of the α-axial 5,6-dimethylbenzimidazole ligand with cucurbit[7]uril. Dalton Transactions, 2009, , 3584.	1.6	54
56	Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells. Journal of Materials Chemistry B, 2017, 5, 2337-2346.	2.9	54
57	Oral Colon-Targeted Konjac Glucomannan Hydrogel Constructed through Noncovalent Cross-Linking by Cucurbit[8]uril for Ulcerative Colitis Therapy. ACS Applied Bio Materials, 2020, 3, 10-19.	2.3	54
58	Enhanced in vitro and in vivo uptake of a hydrophobic model drug coumarin-6 in the presence of cucurbit[7]uril. MedChemComm, 2015, 6, 1370-1374.	3.5	53
59	Recent advances in supramolecular antidotes. Theranostics, 2021, 11, 1513-1526.	4.6	53
60	A systematic evaluation of the biocompatibility of cucurbit[7] uril in mice. Scientific Reports, 2018, 8, 8819.	1.6	52
61	Synthesis of an AlEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy. Chemical Science, 2021, 12, 7727-7734.	3.7	52
62	Supramolecular Inhibition of Neurodegeneration by a Synthetic Receptor. ACS Medicinal Chemistry Letters, 2015, 6, 1174-1178.	1.3	51
63	Antiviral Properties of Alginate-Based Biomaterials: Promising Antiviral Agents against SARS-CoV-2. ACS Applied Bio Materials, 2021, 4, 5897-5907.	2.3	51
64	An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Analytica Chimica Acta, 2016, 927, 82-88.	2.6	50
65	A Synthetic Receptor as a Specific Antidote for Paraquat Poisoning. Theranostics, 2019, 9, 633-645.	4.6	50
66	Post-screening characterisation and in vivo evaluation of an anti-inflammatory polysaccharide fraction from Eucommia ulmoides. Carbohydrate Polymers, 2017, 169, 304-314.	5.1	49
67	Highly efficient cross-linked PbS nanocrystal/C60 hybrid heterojunction photovoltaic cells. Applied Physics Letters, 2009, 95, 183505.	1.5	48
68	Supramolecular Macrophageâ€Liposome Marriage for Cellâ€Hitchhiking Delivery and Immunotherapy of Acute Pneumonia and Melanoma. Advanced Functional Materials, 2021, 31, 2102440.	7.8	48
69	Reductive-Responsive, Single-Molecular-Layer Polymer Nanocapsules Prepared by Lateral-Functionalized Pillar[5]arenes for Targeting Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 14281-14286.	4.0	47
70	Gene delivery based on macrocyclic amphiphiles. Theranostics, 2019, 9, 3094-3106.	4.6	47
71	Versatile Roles of Macrocycles in Organic-Inorganic Hybrid Materials for Biomedical Applications. Matter, 2020, 3, 1557-1588.	5.0	47
72	Removal of Th4+ ions from aqueous solutions by graphene oxide. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 1999-2008.	0.7	45

#	Article	IF	CITATIONS
73	Bioorthogonal supramolecular cell-conjugation for targeted hitchhiking drug delivery. Materials Today, 2020, 40, 9-17.	8.3	45
74	Facile Preparation of Cucurbit[6]uril-Based Polymer Nanocapsules for Targeted Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22925-22931.	4.0	44
75	Dual stimuli-responsive bispillar[5]arene-based nanoparticles for precisely selective drug delivery in cancer cells. Chemical Communications, 2019, 55, 2340-2343.	2.2	43
76	Stabilization of the (E)-1-Ferrocenyl-2-(1-methyl-4-pyridinium)ethylene Cation by Inclusion in Cucurbit[7]uril. Organometallics, 2006, 25, 1820-1823.	1.1	41
77	Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence. Chemical Communications, 2009, , 962.	2.2	41
78	Enhanced MS/MS coverage for metabolite identification in LC-MS-based untargeted metabolomics by target-directed data dependent acquisition with time-staggered precursor ion list. Analytica Chimica Acta, 2017, 992, 67-75.	2.6	41
79	Macrocycle-wrapped polyethylenimine for gene delivery with reduced cytotoxicity. Biomaterials Science, 2018, 6, 1031-1039.	2.6	40
80	Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice. Journal of Controlled Release, 2016, 235, 48-62.	4.8	39
81	Facile Assembly of Cost-Effective and Locally Applicable or Injectable Nanohemostats for Hemorrhage Control. ACS Nano, 2016, 10, 9957-9973.	7.3	39
82	Influence of supramolecular encapsulation of camptothecin by cucurbit[7]uril: reduced toxicity and preserved anti-cancer activity. MedChemComm, 2016, 7, 1392-1397.	3.5	38
83	Encapsulation of Vitamin B $<$ sub $>$ 1 $<$ /sub $>$ and Its Phosphate Derivatives by Cucurbit[7]uril: Tunability of the Binding Site and Affinity by the Presence of Phosphate Groups. Journal of Organic Chemistry, 2016, 81, 1300-1303.	1.7	38
84	Pluronic P85/F68 Micelles of Baicalein Could Interfere with Mitochondria to Overcome MRP2-Mediated Efflux and Offer Improved Anti-Parkinsonian Activity. Molecular Pharmaceutics, 2017, 14, 3331-3342.	2.3	38
85	Supramolecular therapeutics to treat the side effects induced by a depolarizing neuromuscular blocking agent. Theranostics, 2019, 9, 3107-3121.	4.6	38
86	Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers. Colloids and Surfaces B: Biointerfaces, 2017, 156, 227-235.	2.5	37
87	Polyamineâ€Responsive Morphological Transformation of a Supramolecular Peptide for Specific Drug Accumulation and Retention in Cancer Cells. Small, 2021, 17, e2101139.	5.2	35
88	A covalently attached film based on poly(methacrylic acid)-capped Fe3O4 nanoparticles. Thin Solid Films, 2003, 429, 167-173.	0.8	34
89	The catalysis mechanism of La hydrides on hydrogen storage properties of MgH2 in MgH2+xwt.% LaH3 (x=0,10,20, and 30) composites. Journal of Alloys and Compounds, 2013, 577, 64-69.	2.8	34
90	Introduction of benzotriazole into graphene oxide for highly selective coadsorption of An and Ln: Facile synthesis and theoretical study. Chemical Engineering Journal, 2018, 344, 594-603.	6.6	34

#	Article	IF	CITATION
91	Heparin reversal by an oligoethylene glycol functionalized guanidinocalixarene. Chemical Science, 2020, 11, 9623-9629.	3.7	33
92	Gold nanorods with a noncovalently tailorable surface for multi-modality image-guided chemo-photothermal cancer therapy. Chemical Communications, 2019, 55, 13506-13509.	2.2	32
93	Macrophage-hitchhiking supramolecular aggregates of CuS nanoparticles for enhanced tumor deposition and photothermal therapy. Nanoscale Horizons, 2021, 6, 907-912.	4.1	32
94	Supramolecular Vesicles Based on Gold Nanorods for Precise Control of Gene Therapy and Deferred Photothermal Therapy. CCS Chemistry, 2022, 4, 1745-1757.	4.6	32
95	Effects of MoS2 addition on the hydrogen storage properties of 2LiBH4–MgH2 systems. International Journal of Hydrogen Energy, 2013, 38, 14631-14637.	3.8	31
96	Metal Actuated Ring Translocation Switches in Water. Organic Letters, 2018, 20, 3187-3191.	2.4	31
97	Encapsulation of alkyldiammonium ions within two different cavities of twisted cucurbit[14]uril. Chemical Communications, 2016, 52, 2589-2592.	2.2	30
98	Macrocycles and Related Hosts as Supramolecular Antidotes. Trends in Chemistry, 2021, 3, 1-4.	4.4	30
99	Supramolecular micelles as multifunctional theranostic agents for synergistic photodynamic therapy and hypoxia-activated chemotherapy. Acta Biomaterialia, 2021, 131, 483-492.	4.1	28
100	Cucurbit[7]uril stabilization of a diarylmethane carbocation in aqueous solution. Tetrahedron Letters, 2008, 49, 311-314.	0.7	27
101	Supramolecular formulation of nitidine chloride can alleviate its hepatotoxicity and improve its anticancer activity. Food and Chemical Toxicology, 2017, 109, 923-929.	1.8	27
102	Selective Decoating-Induced Activation of Supramolecularly Coated Toxic Nanoparticles for Multiple Applications. ACS Applied Materials & Interfaces, 2020, 12, 25604-25615.	4.0	27
103	Supramolecular nanomedicine derived from cucurbit[7]uril-conjugated nano-graphene oxide for multi-modality cancer therapy. Biomaterials Science, 2021, 9, 3804-3813.	2.6	27
104	The construction of an AIE-based controllable singlet oxygen generation system directed by a supramolecular strategy. Chemical Communications, 2020, 56, 7301-7304.	2.2	27
105	A host–guest complexation based fluorescent probe for the detection of paraquat and diquat herbicides in aqueous solutions. RSC Advances, 2015, 5, 100316-100321.	1.7	26
106	Comparison of normal versus imiquimod-induced psoriatic skin in mice for penetration of drugs and nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 5625-5635.	3.3	26
107	Selection of Planar Chiral Conformations between Pillar[5,6]arenes Induced by Amino Acid Derivatives in Aqueous Media. Chemistry - A European Journal, 2021, 27, 5890-5896.	1.7	26
108	Supramolecular Tropism Driven Aggregation of Nanoparticles In Situ for Tumorâ€Specific Bioimaging and Photothermal Therapy. Small, 2021, 17, e2101332.	5.2	26

#	Article	IF	CITATIONS
109	Semiconductor Quantum Dots Surface Modification for Potential Cancer Diagnostic and Therapeutic Applications. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	25
110	Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly. ACS Central Science, 2018, 4, 600-605.	5. 3	25
111	The self-assembly of a hybrid photosensitizer for the synergistically enhanced photodynamic/photothermal therapy. Biomaterials Science, 2021, 9, 2115-2123.	2.6	25
112	Chiroptic behaviour of a chiral guest in an achiral cucurbit[7]uril host. Tetrahedron: Asymmetry, 2007, 18, 483-487.	1.8	24
113	Inhibition of C(2)-H Activity on Alkylated Imidazolium Monocations and Dications upon Inclusion by Cucurbit[7]uril. Journal of Organic Chemistry, 2016, 81, 9494-9498.	1.7	24
114	Host–Guest Protein Assembly for Affinity Purification of Methyllysine Proteomes. Analytical Chemistry, 2020, 92, 9322-9329.	3.2	24
115	Cucurbit[7]uril-functionalized magnetic nanoparticles for imaging-guided cancer therapy. Journal of Materials Chemistry B, 2020, 8, 2749-2753.	2.9	24
116	Macrocycle-Based Polymer Nanocapsules for Hypoxia-Responsive Payload Delivery., 2020, 2, 266-271.		24
117	Encapsulation of a \hat{l}^2 -carboline in cucurbit[7]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 233-237.	1.6	23
118	Concealing the taste of the Guinness World's most bitter substance by using a synthetic nanocontainer. Nanoscale, 2017, 9, 10606-10609.	2.8	23
119	pH-sensitive loaded retinal/indocyanine green micelles as an "all-in-one―theranostic agent for multi-modal imaging in vivo guided cellular senescence-photothermal synergistic therapy. Chemical Communications, 2019, 55, 6209-6212.	2.2	23
120	Triangular Regulation of Cucurbit[8]uril 1:1 Complexes. Journal of the American Chemical Society, 2019, 141, 5897-5907.	6.6	23
121	Thermosensitive Polymer Dot Nanocomposites for Trimodal Computed Tomography/Photoacoustic/Fluorescence Imaging-Guided Synergistic Chemo-Photothermal Therapy. ACS Applied Materials & Diterfaces, 2020, 12, 51174-51184.	4.0	23
122	Selfâ€Propelled Asymmetrical Nanomotor for Selfâ€Reported Gas Therapy. Small, 2021, 17, e2102286.	5.2	23
123	Supramolecular Recognition of Amino Acids by Twisted Cucurbit[14]uril. Chemistry - an Asian Journal, 2016, 11, 2250-2254.	1.7	22
124	Inhibition of drug-induced seizure development in both zebrafish and mouse models by a synthetic nanoreceptor. Nanoscale, 2018, 10, 10333-10336.	2.8	22
125	A Cucurbit[8]uril 2:2 Complex with a Negative p <i>K</i> _a Shift. Chemistry - A European Journal, 2019, 25, 12552-12559.	1.7	22
126	Carbon dots for ratiometric fluorescence detection of morin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 256, 119751.	2.0	22

#	Article	IF	CITATIONS
127	Platinum-crosslinking polymeric nanoparticle for synergetic chemoradiotherapy of nasopharyngeal carcinoma. Bioactive Materials, 2021, 6, 4707-4716.	8.6	22
128	High-affinity host–guest complex of cucurbit[7]uril with a bis(thiazolium) salt. RSC Advances, 2015, 5, 56110-56115.	1.7	21
129	Functional lipids based on [12]aneN ₃ and naphthalimide as efficient non-viral gene vectors. Organic and Biomolecular Chemistry, 2016, 14, 6346-6354.	1.5	21
130	Emerging trends and new developments in monoclonal antibodies: A scientometric analysis (1980–2016). Human Vaccines and Immunotherapeutics, 2017, 13, 1388-1397.	1.4	21
131	A pH-driven ring translocation switch against cancer cells. Chemical Communications, 2018, 54, 13825-13828.	2.2	21
132	An Eco- and User-Friendly Herbicide. Journal of Agricultural and Food Chemistry, 2019, 67, 7783-7792.	2.4	21
133	Guest Exchange by a Partial Energy Ratchet in Water. Angewandte Chemie - International Edition, 2021, 60, 6617-6623.	7.2	21
134	Cyclodextrinâ€Derived ROSâ€Generating Nanomedicine with pHâ€Modulated Degradability to Enhance Tumor Ferroptosis Therapy and Chemotherapy. Small, 2022, 18, e2200330.	5.2	21
135	Encapsulation of AGEâ€Breaker Alagebrium by Cucurbit[7]uril Improved the Stability of Both Its Carbonyl αâ€Hydrogen and Thiazolium C2â€Hydrogen. Chemistry - an Asian Journal, 2016, 11, 3126-3133.	1.7	20
136	Supramolecular encapsulation of benzocaine and its metabolite para-aminobenzoic acid by cucurbit[7]uril. New Journal of Chemistry, 2016, 40, 3484-3490.	1.4	20
137	[12]aneN ₃ -Based Gemini-Type Amphiphiles with Two-Photon Absorption Properties for Enhanced Nonviral Gene Delivery and Bioimaging. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40094-40107.	4.0	20
138	Supramolecular biomaterials for bio-imaging and imaging-guided therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1200-1210.	3.3	20
139	Fabrication of a Covalently Attached Self-Assembly Multilayer Film Based on CdTe Nanoparticles. Journal of Colloid and Interface Science, 2002, 247, 361-365.	5.0	19
140	Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry. Biomacromolecules, 2015, 16, 3574-3583.	2.6	19
141	Zebrafish: A Visual Model To Evaluate the Biofate of Transferrin Receptor-Targeted 7Peptide-Decorated Coumarin 6 Micelles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39048-39058.	4.0	19
142	Supramolecular Encapsulation and Bioactivity Modulation of a Halonium Ion by Cucurbit[$\langle i \rangle n \langle i \rangle$] uril ($\langle i \rangle n \langle i \rangle$ = 7, 8). Journal of Organic Chemistry, 2018, 83, 4882-4887.	1.7	19
143	Imaging nucleus viscosity and G-quadruplex DNA in living cells using a nucleus-targeting two-photon fluorescent probe. Analyst, The, 2018, 143, 5799-5804.	1.7	19
144	Enhanced antibacterial function of a supramolecular artificial receptor-modified macrophage (SAR-Macrophage). Materials Horizons, 2022, 9, 934-941.	6.4	19

#	Article	IF	CITATION
145	Spermineâ€Responsive Intracellular Selfâ€Aggregation of Gold Nanocages for Enhanced Chemotherapy and Photothermal Therapy of Breast Cancer. Small, 2022, 18, .	5.2	19
146	Controlled assembly of fluorescent multilayers from an aqueous solution of CdTe nanocrystals and nonionic carbazole-containing copolymers. Journal of Materials Chemistry, 2003, 13, 1356.	6.7	18
147	Turmeric: A Review of Its Chemical Composition, Quality Control, Bioactivity, and Pharmaceutical Application., 2018,, 299-350.		18
148	Alleviation of Polycation-Induced Blood Coagulation by the Formation of Polypseudorotaxanes with Macrocyclic Cucurbit[7]uril. ACS Applied Bio Materials, 2018, 1, 544-548.	2.3	18
149	Efficient intracellular delivery of native proteins facilitated by preorganized guanidiniums on pillar[5] arene skeleton. Nano Today, 2022, 43, 101396.	6.2	18
150	Targeted delivery and enhanced uptake of chemo-photodynamic nanomedicine for melanoma treatment. Acta Biomaterialia, 2022, 147, 356-365.	4.1	18
151	Supramolecular alleviation of cardiotoxicity of a small-molecule kinase inhibitor. Organic and Biomolecular Chemistry, 2017, 15, 8046-8053.	1.5	17
152	Alleviating the hepatotoxicity of trazodone via supramolecular encapsulation. Food and Chemical Toxicology, 2018, 112, 421-426.	1.8	17
153	Stimuli-responsive perallyloxycucurbit[6]uril-based nanoparticles for selective drug delivery in melanoma cells. Materials Chemistry Frontiers, 2019, 3, 199-202.	3.2	17
154	pH-Responsive supramolecular DOX-dimer based on cucurbit[8]uril for selective drug release. Chinese Chemical Letters, 2020, 31, 1235-1238.	4.8	17
155	N-Doped carbon dots for the fluorescence and colorimetry dual-mode detection of curcumin. Analyst, The, 2021, 146, 5357-5361.	1.7	17
156	Reviving chloroquine for anti-SARS-CoV-2 treatment with cucurbit[7]uril-based supramolecular formulation. Chinese Chemical Letters, 2021, 32, 3019-3022.	4.8	17
157	Supramolecular nanovesicles for synergistic glucose starvation and hypoxia-activated gene therapy of cancer. Nanoscale, 2021, 13, 9570-9576.	2.8	17
158	The influence of different hydroponic conditions on thorium uptake by Brassica juncea var. foliosa. Environmental Science and Pollution Research, 2015, 22, 6941-6949.	2.7	16
159	Click-reaction generated [12]aneN3-based fluorescent sensor for Zn(II) ions. Inorganic Chemistry Communication, 2012, 23, 67-69.	1.8	15
160	Nanomaterial-dependent immunoregulation of dendritic cells and its effects on biological activities of contraceptive nanovaccines. Journal of Controlled Release, 2016, 225, 252-268.	4.8	15
161	Chameleonic Dye Adapts to Various Environments Shining on Macrocycles or Peptide and Polysaccharide Aggregates. ACS Applied Materials & Interfaces, 2017, 9, 33220-33228.	4.0	15
162	Constraining the Teratogenicity of Pesticide Pollution by a Synthetic Nanoreceptor. Chemistry - an Asian Journal, 2018, 13, 41-45.	1.7	15

#	Article	ΙF	Citations
163	A Review of the Botany, Phytochemical, and Pharmacological Properties of Galangal. , 2018, , 351-396.		15
164	Glutathione-responsive homodithiacalix[4]arene-based nanoparticles for selective intracellular drug delivery. Chemical Communications, 2018, 54, 8128-8131.	2.2	15
165	A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharmaceutica Sinica B, 2022, 12, 3367-3382.	5.7	15
166	Fluorescence enhancement and pK _a shift of a rho kinase inhibitor by a synthetic receptor. Organic and Biomolecular Chemistry, 2017, 15, 4336-4343.	1.5	14
167	The novel extractants, bis-triamides: Synthesis and selective extraction of thorium(IV) from nitric acid media. Separation and Purification Technology, 2017, 188, 485-492.	3.9	14
168	A Novel Strategy for Quantitative Analysis of Major Ginsenosides in Panacis Japonici Rhizoma with a Standardized Reference Fraction. Molecules, 2017, 22, 2067.	1.7	14
169	Supramolecular Luminol–AlEgen Nanoparticles for Deep-Tissue-Inflammation Imaging. ACS Applied Nano Materials, 2022, 5, 5993-6000.	2.4	14
170	Annexin Vâ€Modified Plateletâ€Biomimetic Nanomedicine for Targeted Therapy of Acute Ischemic Stroke. Advanced Healthcare Materials, 2022, 11, .	3.9	14
171	The effect of U speciation in cultivation solution on the uptake of U by variant Sedum alfredii. Environmental Science and Pollution Research, 2016, 23, 9964-9971.	2.7	13
172	Toxicity of hemimethyl-substituted cucurbit[7]uril. Food and Chemical Toxicology, 2017, 108, 510-518.	1.8	13
173	Characterization of nanoparticles combining polyamine detection with photodynamic therapy. Communications Biology, 2021, 4, 803.	2.0	13
174	ROS-initiated chemiluminescence-driven payload release from macrocycle-based Azo-containing polymer nanocapsules. Journal of Materials Chemistry B, 2020, 8, 8878-8883.	2.9	11
175	A butterfly-shaped ESIPT molecule with solid-state fluorescence for the detection of latent fingerprints and exogenous and endogenous ONOOâ´ by caging of the phenol donor. Talanta, 2021, 233, 122593.	2.9	11
176	Steric effects on the catalytic activities of zinc(ii) complexes containing [12]aneN3 ligating units in the cleavage of the RNA and DNA model phosphates. Organic and Biomolecular Chemistry, 2012, 10, 7714.	1.5	10
177	Molecular Encapsulation of Histamine H2-Receptor Antagonists by Cucurbit[7]Uril: An Experimental and Computational Study. Molecules, 2016, 21, 1178.	1.7	10
178	Can toxicities induced by antituberculosis drugs be better managed in diabetic patients?. European Respiratory Journal, 2017, 50, 1700409.	3.1	10
179	Supramolecular nanomedicine for selective cancer therapy <i>via</i> sequential responsiveness to reactive oxygen species and glutathione. Biomaterials Science, 2021, 9, 1355-1362.	2.6	10
180	Supramolecular Polymerizationâ€Induced Nanoassemblies for Selfâ€Augmented Cascade Chemotherapy and Chemodynamic Therapy of Tumor. Angewandte Chemie, 2021, 133, 17711-17719.	1.6	10

#	Article	IF	CITATIONS
181	Multiple noncovalent interactions mediated one-pot therapeutic assemblies for the effective treatment of atherosclerosis. Journal of Materials Chemistry B, 2015, 3, 7355-7365.	2.9	9
182	Interaction between U and Th on their uptake, distribution, and toxicity in V S. alfredii based on the phytoremediation of U and Th. Environmental Science and Pollution Research, 2017, 24, 2996-3005.	2.7	9
183	Alleviation of Hepatotoxicity of Arecoline (Areca Alkaloid) by a Synthetic Receptor. ChemistrySelect, 2017, 2, 2219-2223.	0.7	9
184	Supramolecular strategy for reducing the cardiotoxicity of bedaquiline without compromising its antimycobacterial efficacy. Food and Chemical Toxicology, 2018, 119, 425-429.	1.8	9
185	Trends involving monoclonal antibody (mAb) research and commercialization: A scientometric analysis of IMS Lifecycle R&D Focus Database (1980â \in "2016). Human Vaccines and Immunotherapeutics, 2018, 14, 847-855.	1.4	9
186	Electrochemical Quantitation of Supramolecular Excipient@Drug Complexation: A General Assay Strategy Based on Competitive Host Binding with Surface-Immobilized Redox Guest. Analytical Chemistry, 2020, 92, 2168-2175.	3.2	9
187	Adsorption and desorption of uranium(VI) by Fe–Mn binary oxide in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308, 545-554.	0.7	8
188	Effect of LaH3–TiH2 composite additive on the hydrogen storage properties of Mg2Ni alloys. Journal of Alloys and Compounds, 2013, 581, 270-274.	2.8	7
189	A novel non-viral gene vector for hepatocyte-targeting and in situ monitoring of DNA delivery in single cells. RSC Advances, 2016, 6, 50053-50060.	1.7	7
190	Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Angewandte Chemie, 2020, 132, 21464-21476.	1.6	7
191	Supramolecular Modulation of Antibacterial Activity of Ambroxol by Cucurbit[7]uril. ChemPlusChem, 2020, 85, 679-683.	1.3	7
192	Transformable Honeycombâ€Like Nanoassemblies of Carbon Dots for Regulated Multisite Delivery and Enhanced Antitumor Chemoimmunotherapy. Angewandte Chemie, 2021, 133, 6655-6666.	1.6	7
193	Editorial: Nanotechnology in Traditional Medicines and Natural Products. Frontiers in Chemistry, 2021, 9, 633419.	1.8	7
194	Cucurbit[7]uril as a Broad-Spectrum Antiviral Agent against Diverse RNA Viruses. Virologica Sinica, 2021, 36, 1165-1176.	1.2	7
195	Supramolecularly functionalized platelets for rapid control of hemorrhage. Acta Biomaterialia, 2022, 149, 248-257.	4.1	7
196	Preparative separation of four sesquiterpenoids from <i>Curcuma longa</i> by high-speed counter-current chromatography. Separation Science and Technology, 2017, 52, 497-503.	1.3	6
197	Preparation and evaluation of 131I-quercetin as a novel radiotherapy agent against dedifferentiated thyroid cancer. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 1697-1708.	0.7	6
198	A study of binding interactions between terpyridine derivatives and cucurbit[10]uril. Supramolecular Chemistry, 2018, 30, 706-712.	1.5	6

#	Article	IF	Citations
199	Differential angiogenic activities of naringin and naringenin in zebrafish in vivo and human umbilical vein endothelial cells in vitro. Journal of Functional Foods, 2018, 49, 369-377.	1.6	6
200	Synthesis and Bioactivity of Guanidiniumâ€Functionalized Pillar[5]arene as a Biofilm Disruptor. Angewandte Chemie, 2021, 133, 628-633.	1.6	6
201	Cucurbit[8]uril-based supramolecular hydrogels for biomedical applications. RSC Medicinal Chemistry, 2021, 12, 722-729.	1.7	6
202	Guest Exchange by a Partial Energy Ratchet in Water. Angewandte Chemie, 2021, 133, 6691-6697.	1.6	6
203	Supramolecular Encapsulation of Vitamin B6by Macrocyclic Nanocontainer Cucurbit[7]uril. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	5
204	"Click―Cucurbit[7]uril Hosts on Self-Assembled Monolayers: Quantitative Supramolecular Complexation with Ferrocene Guests. Journal of Physical Chemistry C, 2022, 126, 1661-1671.	1.5	5
205	Visualization of host-guest interactions driven bioorthogonal homing effects at the single cell level in vivo. Nano Today, 2022, 43, 101450.	6.2	4
206	Macrocycle-Surfaced Polymer Nanocapsules: An Emerging Paradigm for Biomedical Applications. Bioconjugate Chemistry, 2022, 33, 2254-2261.	1.8	4
207	Ten years of exploration, a new journey to start: advancing Chinese Medicine to the next level. Chinese Medicine, 2017, 12, 28.	1.6	3
208	Advanced emulsions <i>via</i> noncovalent interaction-mediated interfacial self-assembly. Chemical Communications, 2018, 54, 3174-3177.	2.2	3
209	Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-Type Hosts. , 2019, , 1-25.		2
210	Sensitive monitoring mitochondrial peroxynitrite based on a new reaction site and cell imaging by anthracycline-based red emitting fluorescence probe. Dyes and Pigments, 2021, 195, 109727.	2.0	2
211	Role of oxidative stress in clofazimine-induced cardiac dysfunction in a zebrafish model. Biomedicine and Pharmacotherapy, 2020, 132, 110749.	2.5	1
212	Fabrication of Supramolecular Artificial Light-Harvesting System with Sequential Energy Transfer for Photochemical Catalysis. Chinese Journal of Organic Chemistry, 2020, 40, 243.	0.6	1
213	Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-Type Hosts., 2020,, 647-671.		0
214	Frontispiece: Synthesis and Bioactivity of Guanidiniumâ€Functionalized Pillar[5]arene as a Biofilm Disruptor. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
215	Frontispiz: Synthesis and Bioactivity of Guanidiniumâ€Functionalized Pillar[5]arene as a Biofilm Disruptor. Angewandte Chemie, 2021, 133, .	1.6	0