List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytokinin Oxidase Regulates Rice Grain Production. Science, 2005, 309, 741-745.	6.0	1,620
2	CYTOKININS: Activity, Biosynthesis, and Translocation. Annual Review of Plant Biology, 2006, 57, 431-449.	8.6	1,165
3	Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant Journal, 2014, 77, 367-379.	2.8	911
4	The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460, 1026-1030.	13.7	840
5	Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007, 445, 652-655.	13.7	797
6	Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19631-19636.	3.3	768
7	Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis Â. Plant Cell, 2011, 23, 2169-2183.	3.1	647
8	<i>DWARF10</i> , an <i>RMS1/MAX4/DAD1</i> ortholog, controls lateral bud outgrowth in rice. Plant Journal, 2007, 51, 1019-1029.	2.8	533
9	PSEUDO-RESPONSE REGULATORS 9, 7, and 5 Are Transcriptional Repressors in the <i>Arabidopsis</i> Circadian Clock Â. Plant Cell, 2010, 22, 594-605.	3.1	507
10	The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant Journal, 2008, 55, 526-542.	2.8	467
11	Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany, 2007, 59, 75-83.	2.4	463
12	Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science, 2006, 11, 440-448.	4.3	446
13	ldentification of Genes Encoding Adenylate Isopentenyltransferase, a Cytokinin Biosynthesis Enzyme, inArabidopsis thaliana. Journal of Biological Chemistry, 2001, 276, 26405-26410.	1.6	432
14	Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography–Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa. Plant and Cell Physiology, 2009, 50, 1201-1214.	1.5	429
15	Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany, 2011, 62, 1399-1409.	2.4	418
16	Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production. Plant Cell, 2006, 18, 3252-3274.	3.1	416
17	Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant Journal, 2006, 45, 1028-1036.	2.8	410
18	The Cytokinin-Activated Transcription Factor ARR2 Promotes Plant Immunity via TGA3/NPR1-Dependent Salicylic Acid Signaling in Arabidopsis. Developmental Cell, 2010, 19, 284-295.	3.1	400

#	Article	IF	CITATIONS
19	Arabidopsis CYP735A1 and CYP735A2 Encode Cytokinin Hydroxylases That Catalyze the Biosynthesis of trans-Zeatin. Journal of Biological Chemistry, 2004, 279, 41866-41872.	1.6	377
20	Functional Analyses of <i>LONELY GUY</i> Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 3152-3169.	3.1	376
21	The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Current Biology, 2011, 21, 508-514.	1.8	369
22	Nitrogen-Dependent Accumulation of Cytokinins in Root and theTranslocation to Leaf: Implication of Cytokinin Species that Induces GeneExpression of Maize ResponseRegulator. Plant and Cell Physiology, 2001, 42, 85-93.	1.5	362
23	AtIPT3 is a Key Determinant of Nitrate-Dependent Cytokinin Biosynthesis in Arabidopsis. Plant and Cell Physiology, 2004, 45, 1053-1062.	1.5	343
24	The <i>Arabidopsis</i> Nitrate Transporter NRT2.4 Plays a Double Role in Roots and Shoots of Nitrogen-Starved Plants Â. Plant Cell, 2012, 24, 245-258.	3.1	335
25	The AtGenExpress hormone- and chemical-treatment data set: Experimental design, data evaluation, model data analysis, and data access. Plant Journal, 2008, 55, 080414150319983.	2.8	307
26	<i>Arabidopsis</i> ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7150-7155.	3.3	271
27	Abscisic Acid Interacts Antagonistically with Salicylic Acid Signaling Pathway in Rice– <i>Magnaporthe grisea</i> Interaction. Molecular Plant-Microbe Interactions, 2010, 23, 791-798.	1.4	266
28	Metabolism and Longâ€distance Translocation of Cytokinins. Journal of Integrative Plant Biology, 2010, 52, 53-60.	4.1	262
29	The Arabidopsis nitrate transporter <scp>NRT</scp> 2.5 plays a role in nitrate acquisition and remobilization in nitrogenâ€starved plants. Plant Journal, 2014, 80, 230-241.	2.8	260
30	Transcriptional repressor PRR5 directly regulates clock-output pathways. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17123-17128.	3.3	253
31	Transcript Profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR Arrhythmic Triple Mutant Reveals a Role for the Circadian Clock in Cold Stress Response. Plant and Cell Physiology, 2009, 50, 447-462.	1.5	249
32	Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Research, 2012, 19, 37-49.	1.5	241
33	Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 76-81.	3.3	236
34	Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 2017, 3, 17097.	4.7	232
35	Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. Journal of Experimental Botany, 2002, 53, 971-977.	2.4	231
36	Phloem-Transported Cytokinin Regulates Polar Auxin Transport and Maintains Vascular Pattern in the Root Meristem. Current Biology, 2011, 21, 927-932.	1.8	231

#	Article	IF	CITATIONS
37	Impact of clock-associated <i>Arabidopsis</i> pseudo-response regulators in metabolic coordination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7251-7256.	3.3	228
38	Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts. Plant Physiology, 2014, 164, 1759-1771.	2.3	228
39	Targeted Degradation of PSEUDO-RESPONSE REGULATOR5 by an SCF ^{ZTL} Complex Regulates Clock Function and Photomorphogenesis in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2516-2530.	3.1	223
40	Ectopic Expression of KNOTTED1-Like Homeobox Protein Induces Expression of Cytokinin Biosynthesis Genes in Rice. Plant Physiology, 2006, 142, 54-62.	2.3	222
41	A responseâ€regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant Journal, 1998, 14, 337-344.	2.8	216
42	Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes. Plant Physiology, 2017, 175, 1158-1174.	2.3	214
43	Type-B ARR Transcription Factors, ARR10 and ARR12, are Implicated in Cytokinin-Mediated Regulation of Protoxylem Differentiation in Roots of Arabidopsis thaliana. Plant and Cell Physiology, 2006, 48, 84-96.	1.5	210
44	Expression ofArabidopsisresponse regulator homologs is induced by cytokinins and nitrate. FEBS Letters, 1998, 429, 259-262.	1.3	207
45	Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato Â. Plant Cell, 2014, 26, 3763-3774.	3.1	206
46	A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nature Communications, 2018, 9, 1376.	5.8	202
47	Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications, 2014, 5, 4983.	5.8	199
48	Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 2017, 68, erw449.	2.4	191
49	A bHLH Complex Activates Vascular Cell Division via Cytokinin Action in Root Apical Meristem. Current Biology, 2014, 24, 2053-2058.	1.8	190
50	Molecular Characterization of Cytokinin-Responsive Histidine Kinases in Maize. Differential Ligand Preferences and Response to cis-Zeatin. Plant Physiology, 2004, 134, 1654-1661.	2.3	189
51	The GID1-Mediated Gibberellin Perception Mechanism Is Conserved in the Lycophyte <i>Selaginella moellendorffii</i> but Not in the Bryophyte <i>Physcomitrella patens</i> . Plant Cell, 2007, 19, 3058-3079.	3.1	188
52	Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361, 181-186.	6.0	188
53	Comprehensive Transcriptome Analysis of Phytohormone Biosynthesis and Signaling Genes in Microspore/Pollen and Tapetum of Rice. Plant and Cell Physiology, 2008, 49, 1429-1450.	1.5	187
54	Overexpression of a Type-A Response Regulator Alters Rice Morphology and Cytokinin Metabolism. Plant and Cell Physiology, 2007, 48, 523-539.	1.5	181

#	Article	IF	CITATIONS
55	Side-Chain Modification of Cytokinins Controls Shoot Growth in Arabidopsis. Developmental Cell, 2013, 27, 452-461.	3.1	180
56	Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant Journal, 2017, 90, 61-78.	2.8	173
57	Involvement of Auxin and Brassinosteroid in the Regulation of Petiole Elongation under the Shade Â. Plant Physiology, 2010, 153, 1608-1618.	2.3	172
58	Distinct Isoprenoid Origins of cis- and trans-Zeatin Biosyntheses in Arabidopsis. Journal of Biological Chemistry, 2004, 279, 14049-14054.	1.6	171
59	Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Current Biology, 2016, 26, 1990-1997.	1.8	170
60	Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOGâ€dependent pathway in cytokinin activation. Plant Journal, 2012, 69, 355-365.	2.8	167
61	A Putative Peroxisomal Polyamine Oxidase, AtPAO4, is Involved in Polyamine Catabolism in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 1272-1282.	1.5	163
62	Suppression of αâ€∎mylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnology Journal, 2012, 10, 1110-1117.	4.1	156
63	Combinatorial Microarray Analysis Revealing Arabidopsis Genes Implicated in Cytokinin Responses through the His→Asp Phosphorelay Circuitry. Plant and Cell Physiology, 2005, 46, 339-355.	1.5	155
64	Cytokinins Act Synergistically with Salicylic Acid to Activate Defense Gene Expression in Rice. Molecular Plant-Microbe Interactions, 2013, 26, 287-296.	1.4	153
65	Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana. Plant and Cell Physiology, 2018, 59, 8-16.	1.5	153
66	Cytokinin Activity of cis-Zeatin and Phenotypic Alterations Induced by Overexpression of Putative cis-Zeatin- <i>O</i> -glucosyltransferase in Rice Â. Plant Physiology, 2012, 160, 319-331.	2.3	152
67	Differential Interaction of Maize Root Ferredoxin:NADP+ Oxidoreductase with Photosynthetic and Non-Photosynthetic Ferredoxin Isoproteins1. Plant Physiology, 2000, 123, 1037-1046.	2.3	150
68	Repression of Nitrogen Starvation Responses by Members of the Arabidopsis GARP-Type Transcription Factor NIGT1/HRS1 Subfamily. Plant Cell, 2018, 30, 925-945.	3.1	143
69	The highly buffered Arabidopsis immune signaling network conceals the functions of its components. PLoS Genetics, 2017, 13, e1006639.	1.5	138
70	Ligand-binding properties and subcellular localization of maize cytokinin receptors. Journal of Experimental Botany, 2011, 62, 5149-5159.	2.4	135
71	An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nature Plants, 2019, 5, 363-368.	4.7	135
72	Atomic Structure of Plant Glutamine Synthetase. Journal of Biological Chemistry, 2006, 281, 29287-29296.	1.6	129

#	Article	IF	CITATIONS
73	<i>WUSCHEL-RELATED HOMEOBOX4</i> Is Involved in Meristem Maintenance and Is Negatively Regulated by the CLE Gene <i>FCP1</i> in Rice. Plant Cell, 2013, 25, 229-241.	3.1	129
74	Ethylene suppresses tomato (<i>Solanum lycopersicum</i>) fruit set through modification of gibberellin metabolism. Plant Journal, 2015, 83, 237-251.	2.8	128
75	Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nature Plants, 2017, 3, 17112.	4.7	127
76	Studies of <i>aberrant phyllotaxy1</i> Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem Â. Plant Physiology, 2009, 150, 205-216.	2.3	124
77	Arabidopsis Response Regulator, ARR22, Ectopic Expression of Which Results in Phenotypes Similar to the wol Cytokinin-Receptor Mutant. Plant and Cell Physiology, 2004, 45, 1063-1077.	1.5	121
78	Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant Journal, 2009, 57, 883-894.	2.8	121
79	Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Scientific Reports, 2014, 4, 5563.	1.6	121
80	Regulatory Roles of Cytokinins and Cytokinin Signaling in Response to Potassium Deficiency in Arabidopsis. PLoS ONE, 2012, 7, e47797.	1.1	120
81	Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in <i>Lotus japonicus</i> Â. Plant Physiology, 2015, 167, 545-557.	2.3	120
82	Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15947-15952.	3.3	119
83	Molecular basis for cytokinin biosynthesis. Phytochemistry, 2009, 70, 444-449.	1.4	117
84	Mechanisms Underlying Robustness and Tunability in a Plant Immune Signaling Network. Cell Host and Microbe, 2014, 15, 84-94.	5.1	117
85	Functional Characterization and Expression Analysis of a Gene, OsENT2, Encoding an Equilibrative Nucleoside Transporter in Rice Suggest a Function in Cytokinin Transport. Plant Physiology, 2005, 138, 196-206.	2.3	114
86	Q&A: How do plants respond to cytokinins and what is their importance?. BMC Biology, 2015, 13, 102.	1.7	114
87	Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant, Cell and Environment, 2014, 37, 2313-2324.	2.8	113
88	Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9972-9977.	3.3	112
89	Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Current Biology, 2019, 29, 3041-3052.e4.	1.8	109
90	Destination-Selective Long-Distance Movement of Phloem Proteins. Plant Cell, 2005, 17, 1801-1814.	3.1	108

#	Article	IF	CITATIONS
91	Synthesis of Very-Long-Chain Fatty Acids in the Epidermis Controls Plant Organ Growth by Restricting Cell Proliferation. PLoS Biology, 2013, 11, e1001531.	2.6	107
92	A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology, 2020, 38, 1203-1210.	9.4	103
93	Nitrogen-Dependent Regulation of De Novo Cytokinin Biosynthesis in Rice: The Role of Glutamine Metabolism as an Additional Signal. Plant and Cell Physiology, 2013, 54, 1881-1893.	1.5	100
94	Reduction of Gibberellin by Low Temperature Disrupts Pollen Development in Rice Â. Plant Physiology, 2014, 164, 2011-2019.	2.3	99
95	UGT74D1 Catalyzes the Glucosylation of 2-Oxindole-3-Acetic Acid in the Auxin Metabolic Pathway in Arabidopsis. Plant and Cell Physiology, 2014, 55, 218-228.	1.5	99
96	N-Glucosyltransferase UGT76C2 is Involved in Cytokinin Homeostasis and Cytokinin Response in Arabidopsis thaliana. Plant and Cell Physiology, 2011, 52, 2200-2213.	1.5	98
97	Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584, 109-114.	13.7	98
98	Regulation of the KNOX-GA Gene Module Induces Heterophyllic Alteration in North American Lake Cress. Plant Cell, 2014, 26, 4733-4748.	3.1	97
99	Ectopic expression of specific <scp>GA</scp> 2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology Journal, 2017, 15, 850-864.	4.1	97
100	Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume– <i>Rhizobium</i> Symbiosis. Plant and Cell Physiology, 2016, 57, 1791-1800.	1.5	94
101	Molecular Cloning and Differential Expression of the Maize Ferredoxin Gene Family. Plant Physiology, 1991, 96, 77-83.	2.3	88
102	Partial Characterization of the Signaling Pathway for the Nitrate-Dependent Expression of Genes for Nitrogen-Assimilatory Enzymes Using Detached Maize Leaves. Plant and Cell Physiology, 1997, 38, 837-843.	1.5	87
103	Metabolomic Screening Applied to Rice FOX Arabidopsis Lines Leads to the Identification of a Gene-Changing Nitrogen Metabolism. Molecular Plant, 2010, 3, 125-142.	3.9	87
104	RSS1 regulates the cell cycle and maintains meristematic activity under stress conditions in rice. Nature Communications, 2011, 2, 278.	5.8	87
105	Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nature Communications, 2021, 12, 4944.	5.8	87
106	Cytokinin-Mediated Regulation of Reactive Oxygen Species Homeostasis Modulates Stomatal Immunity in Arabidopsis. Plant Cell, 2017, 29, 543-559.	3.1	86
107	Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses. ELife, 2016, 5, .	2.8	86
108	<scp>SUPERMAN</scp> regulates floral whorl boundaries through control of auxin biosynthesis. EMBO Journal, 2018, 37, .	3.5	85

#	Article	IF	CITATIONS
109	LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 Form a Positive Feedback Regulatory Loop in the <i>Arabidopsis</i> Circadian Clock Â. Plant Cell, 2011, 23, 486-498.	3.1	84
110	Cytokinin biosynthesis and perception. Physiologia Plantarum, 2006, 126, 528-538.	2.6	83
111	Constitutive activation of a CCâ€NB‣RR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant Journal, 2008, 55, 14-27.	2.8	82
112	Interspecies hormonal control of host root morphology by parasitic plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5283-5288.	3.3	82
113	Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant Journal, 2021, 105, 421-430.	2.8	80
114	Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants. Journal of Plant Research, 2003, 116, 253-257.	1.2	79
115	AHK5 Histidine Kinase Regulates Root Elongation Through an ETR1-Dependent Abscisic Acid and Ethylene Signaling Pathway in Arabidopsis thaliana. Plant and Cell Physiology, 2006, 48, 375-380.	1.5	79
116	The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nature Communications, 2011, 2, 544.	5.8	79
117	OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice. Theoretical and Applied Genetics, 2012, 125, 647-657.	1.8	79
118	Gene expression and sensitivity in response to copper stress in rice leaves*. Journal of Experimental Botany, 2008, 59, 3465-3474.	2.4	77
119	Methylated Cytokinins from the Phytopathogen <i>Rhodococcus fascians</i> Mimic Plant Hormone Activity. Plant Physiology, 2015, 169, 1118-1126.	2.3	75
120	Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport In Planta. Journal of Integrative Plant Biology, 2005, 47, 588-603.	4.1	74
121	Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19â€dependent and a PGP19â€independent manner. Plant Journal, 2008, 53, 516-529.	2.8	74
122	<i>WAVY LEAF1</i> , an Ortholog of Arabidopsis <i>HEN1</i> , Regulates Shoot Development by Maintaining MicroRNA and Trans-Acting Small Interfering RNA Accumulation in Rice Â. Plant Physiology, 2010, 154, 1335-1346.	2.3	73
123	The <i>COP1</i> Ortholog <i>PPS</i> Regulates the Juvenile–Adult and Vegetative–Reproductive Phase Changes in Rice Â. Plant Cell, 2011, 23, 2143-2154.	3.1	73
124	The reduction in maize leaf growth under mild drought affects the transition between cell division and cannot be restored by elevated gibberellic acid levels. Plant Biotechnology Journal, 2018, 16, 615-627.	4.1	73
125	Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nature Communications, 2018, 9, 5290.	5.8	73
126	Regulation of Sulfur-Responsive Gene Expression by Exogenously Applied Cytokinins in Arabidopsis thaliana. Plant and Cell Physiology, 2002, 43, 1493-1501.	1.5	72

#	Article	IF	CITATIONS
127	RiceFOX: A Database of Arabidopsis Mutant Lines Overexpressing Rice Full-Length cDNA that Contains a Wide Range of Trait Information to Facilitate Analysis of Gene Function. Plant and Cell Physiology, 2011, 52, 265-273.	1.5	72
128	Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids, 2010, 39, 1003-1012.	1.2	71
129	Genetic networks regulated by <i>ASYMMETRIC LEAVES1</i> (<i>AS1</i>) and <i>AS2</i> in leaf development in <i>Arabidopsis thaliana</i> : <i>KNOX</i> genes control five morphological events. Plant Journal, 2010, 61, 70-82.	2.8	70
130	<i>PLASTOCHRON3/GOLIATH</i> encodes a glutamate carboxypeptidase required for proper development in rice. Plant Journal, 2009, 58, 1028-1040.	2.8	69
131	Overexpression of Prunus DAM6 inhibits growth, represses bud break competency of dormant buds and delays bud outgrowth in apple plants. PLoS ONE, 2019, 14, e0214788.	1.1	69
132	A Nitrate-Inducible Ferredoxin in Maize Roots (Genomic Organization and Differential Expression of) Tj ETQq0 () 0 rgBT /0	verlock 10 Tf
133	High CO2 Triggers Preferential Root Growth of Arabidopsis thaliana Via Two Distinct Systems Under Low pH and Low N Stresses. Plant and Cell Physiology, 2014, 55, 269-280.	1.5	68
134	Molecular Identification and Characterization of Cytosolic Isoforms of Glutamine Synthetase in Maize Roots. Journal of Biological Chemistry, 1996, 271, 29561-29568.	1.6	67
135	Genome-Wide Direct Target Analysis Reveals a Role for SHORT-ROOT in Root Vascular Patterning through Cytokinin Homeostasis Â. Plant Physiology, 2011, 157, 1221-1231.	2.3	67
136	A Link between Cytokinin andASL9(ASYMMETRIC LEAVES 2 LIKE 9) That Belongs to theAS2/LOB(LATERAL) Tj E 2007, 71, 1269-1278.	TQq0 0 0 rg 0.6	gBT /Overlock 66
137	Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones. Journal of Experimental Botany, 2012, 63, 1873-1893.	2.4	66
138	Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development (Cambridge), 2013, 140, 765-769.	1.2	65
139	His-Asp phosphotransfer possibly involved in the nitrogen signal transduction mediated by cytokinin in maize: molecular cloning of cDNAs for two-component regulatory factors and demonstration of phosphotransfer activity in vitro. Plant Molecular Biology, 1999, 41, 563-573.	2.0	64
140	Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding. Plant Physiology, 2018, 176, 3081-3102.	2.3	64
141	Complementary DNA Cloning and Characterization of Ferredoxin Localized in Bundle-Sheath Cells of Maize Leaves1. Plant Physiology, 1999, 119, 481-488.	2.3	63
142	Molecular characterization of His-Asp phosphorelay signaling factors in maize leaves: implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. Plant Molecular Biology, 2003, 52, 331-341.	2.0	63
143	A geneâ€stacking approach to overcome the tradeâ€off between drought stress tolerance and growth in Arabidopsis. Plant Journal, 2019, 97, 240-256.	2.8	63
144	The Maize <i>Viviparous8</i> Locus, Encoding a Putative ALTERED MERISTEM PROGRAM1-Like Peptidase, Regulates Abscisic Acid Accumulation and Coordinates Embryo and Endosperm Development Â. Plant Physiology, 2008, 146, 1193-1206.	2.3	61

#	Article	IF	CITATIONS
145	His-Asp phosphorelay signaling: a communication avenue between plants and their environment. Plant Molecular Biology, 2000, 42, 273-278.	2.0	60
146	Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs. Plant and Cell Physiology, 2016, 57, 1085-1097.	1.5	60
147	A Small Subfamily of <i>Arabidopsis RADIALIS-LIKE SANT/MYB</i> Genes: A Link to HOOKLESS1-Mediated Signal Transduction during Early Morphogenesis. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2687-2696.	0.6	59
148	Topolins and Hydroxylated Thidiazuron Derivatives Are Substrates of Cytokinin O-Glucosyltransferase with Position Specificity Related to Receptor Recognition. Plant Physiology, 2005, 137, 1057-1066.	2.3	56
149	Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta, 2013, 237, 991-999.	1.6	56
150	Isolation and Characterization of a cDNA That Encodes Maize Glutamate Dehydrogenase. Plant and Cell Physiology, 1995, 36, 789-797.	1.5	55
151	Mesophyll conductance decreases in the wild type but not in an <scp>ABA</scp> â€deficient mutant (<scp><i>aba1</i></scp>) of <scp><i>N</i></scp> <i>icotiana plumbaginifolia</i> under drought conditions. Plant, Cell and Environment, 2015, 38, 388-398.	2.8	55
152	Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant Journal, 2004, 41, 512-523.	2.8	54
153	NLR locus-mediated trade-off between abiotic and biotic stress adaptation in Arabidopsis. Nature Plants, 2017, 3, 17072.	4.7	53
154	Immunological analysis of the phosphorylation state of maize C4-form phosphoenolpyruvate carboxylase with specific antibodies raised against a synthetic phosphorylated peptide. Plant Journal, 2000, 21, 17-26.	2.8	52
155	Overexpression of Sucrose Phosphate Synthase Enhanced Sucrose Content and Biomass Production in Transgenic Sugarcane. Plants, 2020, 9, 200.	1.6	52
156	Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth. Plant and Cell Physiology, 2017, 58, 702-716.	1.5	50
157	Cytokinin Transporters: GO and STOP in Signaling. Trends in Plant Science, 2017, 22, 455-461.	4.3	49
158	Highly Sensitive High-Throughput Profiling of Six Phytohormones Using MS-Probe Modification and Liquid Chromatography–Tandem Mass Spectrometry. Methods in Molecular Biology, 2012, 918, 151-164.	0.4	48
159	Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. Plant Molecular Biology, 2014, 85, 411-428.	2.0	48
160	Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2013, 65, 9-16.	2.8	47
161	Comprehensive quantification and genome survey reveal the presence of novel phytohormone action modes in red seaweeds. Journal of Applied Phycology, 2016, 28, 2539-2548.	1.5	47
162	The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Alleviates Salinity Stress in Cassava. Frontiers in Plant Science, 2016, 7, 2039.	1.7	47

#	Article	IF	CITATIONS
163	Efficacy of Microarray Profiling Data Combined with QTL Mapping for the Identification of a QTL Gene Controlling the Initial Growth Rate in Rice. Plant and Cell Physiology, 2012, 53, 729-739.	1.5	46
164	Hormone level analysis on adventitious root formation in Eucalyptus globulus. New Forests, 2014, 45, 577-587.	0.7	46
165	Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture Â. Plant Physiology, 2016, 170, 1435-1444.	2.3	46
166	Jasmonate regulates juvenile-adult phase transition in rice. Development (Cambridge), 2016, 143, 3407-16.	1.2	46
167	Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO2. Scientific Reports, 2019, 9, 7765.	1.6	46
168	Identification of Cytokinin Biosynthesis Genes in Arabidopsis: A Breakthrough for Understanding the Metabolic Pathway and the Regulation in Higher Plants. Journal of Plant Growth Regulation, 2002, 21, 17-23.	2.8	45
169	Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. BMC Plant Biology, 2016, 16, 45.	1.6	45
170	WUSCHEL-RELATED HOMEOBOX4 acts as a key regulator in early leaf development in rice. PLoS Genetics, 2018, 14, e1007365.	1.5	44
171	Isolation and characterization of a cDNA that encodes maize uroporphyrinogen III methyltransferase, an enzyme involved in the synthesis of siroheme, which is a prosthetic group of nitrite reductase. Plant Journal, 1996, 10, 883-892.	2.8	43
172	Cytokinin Receptors are Required for Normal Development of Auxin-transporting Vascular Tissues in the Hypocotyl but not in Adventitious Roots. Plant and Cell Physiology, 2006, 47, 234-243.	1.5	43
173	Autophagy-mediated regulation of phytohormone metabolism during rice anther development. Plant Signaling and Behavior, 2017, 12, e1365211.	1.2	43
174	Differential Expression of Two Genes for Sucrose-Phosphate Synthase in Sugarcane: Molecular Cloning of the cDNAs and Comparative Analysis of Gene Expression. Plant and Cell Physiology, 1997, 38, 961-965.	1.5	42
175	Hormone-mediated nitrogen signaling in plants: implication of participation of abscissic acid in negative regulation of cytokinin-inducible expression of maize response regulator. Plant Physiology and Biochemistry, 2003, 41, 605-610.	2.8	42
176	Cytokinin Biosynthesis and Regulation. Vitamins and Hormones, 2005, 72, 271-287.	0.7	42
177	UniVIO: A Multiple Omics Database with Hormonome and Transcriptome Data from Rice. Plant and Cell Physiology, 2013, 54, e9-e9.	1.5	42
178	Jasmonic acid facilitates flower opening and floral organ development through the upregulated expression of SIMYB21 transcription factor in tomato. Bioscience, Biotechnology and Biochemistry, 2018, 82, 292-303.	0.6	41
179	Cytokinin Signaling Is Essential for Organ Formation in <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2019, 60, 1842-1854.	1.5	41
180	Identification and Characterization of a Gene Encoding Drought-Inducible Protein Localizing in the Bundle Sheath Cell of Sugarcane. Plant and Cell Physiology, 2002, 43, 350-354.	1.5	39

#	Article	IF	CITATIONS
181	Lack of Cytosolic Glutamine Synthetase1;2 Activity Reduces Nitrogen-Dependent Biosynthesis of Cytokinin Required for Axillary Bud Outgrowth in Rice Seedlings. Plant and Cell Physiology, 2017, 58, 679-690.	1.5	38
182	Rice <i><scp>DECUSSATE</scp></i> controls phyllotaxy by affecting the cytokinin signaling pathway. Plant Journal, 2012, 72, 869-881.	2.8	37
183	Efficient and Heritable Targeted Mutagenesis in Mosses Using the CRISPR/Cas9 System. Plant and Cell Physiology, 2016, 57, 2600-2610.	1.5	35
184	Aberrant Stamen Development is Associated with Parthenocarpic Fruit Set Through Up-Regulation of Gibberellin Biosynthesis in Tomato. Plant and Cell Physiology, 2019, 60, 38-51.	1.5	35
185	Improvement of yield and grain quality by periodic cold plasma treatment with rice plants in a paddy field. Plasma Processes and Polymers, 2021, 18, .	1.6	35
186	Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiological and Molecular Plant Pathology, 2012, 78, 1-7.	1.3	34
187	Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23970-23981.	3.3	34
188	Cytokinin Biosynthesis and Metabolism. , 2010, , 95-114.		32
189	Uniconazole, a cytochrome P450 inhibitor, inhibits trans-zeatin biosynthesis in Arabidopsis. Phytochemistry, 2013, 87, 30-38.	1.4	30
190	The Maize <i>Hairy Sheath Frayed1</i> (<i>Hsf1</i>) Mutation Alters Leaf Patterning through Increased Cytokinin Signaling. Plant Cell, 2020, 32, 1501-1518.	3.1	30
191	CHRK1, a chitinase-related receptor-like kinase, plays a role in plant development and cytokinin homeostasis in tobacco. Plant Molecular Biology, 2003, 53, 877-890.	2.0	29
192	Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Science, 2009, 14, 202-208.	3.1	29
193	Environmental regulation of stomatal response in the Arabidopsis Cvi-0 ecotype. Planta, 2011, 234, 555-563.	1.6	29
194	Plant Responses to CO2: Background and Perspectives. Plant and Cell Physiology, 2014, 55, 237-240.	1.5	29
195	SAD1, an <scp>RNA</scp> polymeraseÂl subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. Plant Journal, 2015, 81, 282-291.	2.8	29
196	Design of an optimal promoter involved in the heatâ€induced transcriptional pathway in Arabidopsis, soybean, rice and maize. Plant Journal, 2017, 89, 671-680.	2.8	28
197	Structural insight into the reaction mechanism and evolution of cytokinin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2734-2739.	3.3	27
198	Copper mediates auxin signalling to control cell differentiation in the copper moss Scopelophila cataractae. Journal of Experimental Botany, 2015, 66, 1205-1213.	2.4	27

#	Article	IF	CITATIONS
199	Gene expression evolution in pattern-triggered immunity within <i>Arabidopsis thaliana</i> and across Brassicaceae species. Plant Cell, 2021, 33, 1863-1887.	3.1	27
200	Omics and Bioinformatics: An Essential Toolbox for Systems Analyses of Plant Functions Beyond 2010. Plant and Cell Physiology, 2009, 50, 1177-1180.	1.5	26
201	Difference Between Day and Night Temperatures Affects Stem Elongation in Tomato (Solanum) Tj ETQq1 1 0.784 2020, 11, 577235.	·314 rgBT 1.7	/Overlock 10 26
202	Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Plant Molecular Biology, 2022, 109, 249-269.	2.0	26
203	Chromatin interacting factor Os <scp>VIL</scp> 2 increases biomass and rice grain yield. Plant Biotechnology Journal, 2019, 17, 178-187.	4.1	25
204	Abscisic Acid Acts as a Regulator of Molecular Trafficking through Plasmodesmata in the Moss <i>Physcomitrella patens</i> . Plant and Cell Physiology, 2019, 60, 738-751.	1.5	25
205	Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS ONE, 2017, 12, e0189726.	1.1	25
206	A method for separation and determination of cytokinin nucleotides from plant tissues. Journal of Plant Research, 2003, 116, 265-269.	1.2	24
207	<scp>CLUMSY VEIN</scp> , the Arabidopsis <scp>DEAH</scp> â€box Prp16 ortholog, is required for auxinâ€mediated development. Plant Journal, 2015, 81, 183-197.	2.8	24
208	Arabidopsis Root-Type Ferredoxin:NADP(H) Oxidoreductase 2 is Involved in Detoxification of Nitrite in Roots. Plant and Cell Physiology, 2016, 57, 2440-2450.	1.5	24
209	Morphological and plant hormonal changes during parasitization by <i>Cuscuta japonica</i> on <i>Momordica charantia</i> . Journal of Plant Interactions, 2014, 9, 220-232.	1.0	23
210	Mistletoe infestation mediates alteration of the phytohormone profile and anti-oxidative metabolism in bark and wood of its host Pinus sylvestris. Tree Physiology, 2017, 37, 676-691.	1.4	23
211	Effects of instantaneous and growth CO 2 levels and abscisic acid on stomatal and mesophyll conductances. Plant, Cell and Environment, 2019, 42, 1257-1269.	2.8	23
212	Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Scientific Reports, 2021, 11, 6280.	1.6	23
213	Diminished Auxin Signaling Triggers Cellular Reprogramming by Inducing a Regeneration Factor in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, 63, 384-400.	1.5	23
214	Differential response of genes for ferredoxin and ferredoxin : NADP+ oxidoreductase to nitrate and light in maize leaves. Journal of Plant Physiology, 2003, 160, 65-70.	1.6	22
215	Cytokinin and auxin modulate cucumber parthenocarpy fruit development. Scientia Horticulturae, 2021, 282, 110026.	1.7	22
216	Identification of the unique molecular framework of heterophylly in the amphibious plant <i>Callitriche palustris</i> L. Plant Cell, 2021, 33, 3272-3292.	3.1	22

#	Article	IF	CITATIONS
217	Seasonal fluctuation of organic and inorganic components in xylem sap of Populus nigra. Plant Root, 2011, 5, 56-62.	0.3	21
218	Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Functional Plant Biology, 2015, 42, 397.	1.1	21
219	Columnar growth phenotype in apple results from gibberellin deficiency by ectopic expression of a dioxygenase gene. Tree Physiology, 2020, 40, 1205-1216.	1.4	21
220	Persistence of plant hormone levels in rice shoots grown under microgravity conditions in space: its relationship to maintenance of shoot growth. Physiologia Plantarum, 2017, 161, 285-293.	2.6	20
221	Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L Bulletin of Environmental Contamination and Toxicology, 2018, 100, 444-450.	1.3	20
222	A Positive Feedback Loop Comprising LHW–TMO5 and Local Auxin Biosynthesis Regulates Initial Vascular Development in Arabidopsis Roots. Plant and Cell Physiology, 2019, 60, 2684-2691.	1.5	20
223	Aluminum effect on starch, soluble sugar, and phytohormone in roots of Quercus serrata Thunb. seedlings. Trees - Structure and Function, 2016, 30, 405-413.	0.9	19
224	Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes. Plant Physiology and Biochemistry, 2018, 128, 170-177.	2.8	19
225	Flowering time control in rice by introducing Arabidopsis clock-associated PSEUDO-RESPONSE REGULATOR 5. Bioscience, Biotechnology and Biochemistry, 2020, 84, 970-979.	0.6	19
226	Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant Journal, 2021, 106, 326-335.	2.8	19
227	Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi. Plant Signaling and Behavior, 2015, 10, e1028706.	1.2	18
228	Phytohormonal Regulation of Biomass Allocation and Morphological and Physiological Traits of Leaves in Response to Environmental Changes in Polygonum cuspidatum. Frontiers in Plant Science, 2016, 7, 1189.	1.7	18
229	SILAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato. Plant and Cell Physiology, 2018, 59, 1170-1186.	1.5	18
230	WIND1 induces dynamic metabolomic reprogramming during regeneration in Brassica napus. Developmental Biology, 2018, 442, 40-52.	0.9	18
231	A new method for enzymatic preparation of isopentenyladenine-type and trans -zeatin-type cytokinins with radioisotope-labeling. Journal of Plant Research, 2003, 116, 259-263.	1.2	17
232	Variation in Splicing Efficiency Underlies Morphological Evolution in Capsella. Developmental Cell, 2018, 44, 192-203.e5.	3.1	17
233	Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites. Parasitology International, 2018, 67, 47-58.	0.6	17
234	Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites, 2020, 10, 68.	1.3	17

#	Article	IF	CITATIONS
235	Harnessing symbiotic plant–fungus interactions to unleash hidden forces from extreme plant ecosystems. Journal of Experimental Botany, 2020, 71, 3865-3877.	2.4	17
236	Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. Plant Journal, 2021, 105, 1507-1520.	2.8	17
237	Natural Variation of Molecular and Morphological Gibberellin Responses. Plant Physiology, 2017, 173, 703-714.	2.3	16
238	Diverse panicle architecture results from various combinations of Prl5/GA20ox4 and Pbl6/APO1 alleles. Communications Biology, 2020, 3, 302.	2.0	16
239	Sugars enhance parthenocarpic fruit formation in cucumber by promoting auxin and cytokinin signaling. Scientia Horticulturae, 2021, 283, 110061.	1.7	16
240	Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567â€A. Molecular Plant Pathology, 2019, 20, 211-222.	2.0	15
241	The inhibition of SIIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. Journal of Plant Physiology, 2020, 252, 153238.	1.6	14
242	Suppression of <scp>DELLA</scp> signaling induces procambial cell formation in culture. Plant Journal, 2018, 94, 48-59.	2.8	13
243	Cytosolic Glutamine Synthetase GS1;3 Is Involved in Rice Grain Ripening and Germination. Frontiers in Plant Science, 2022, 13, 835835.	1.7	12
244	Regulation of Carbon and Nitrogen Assimilation Through Gene Expression. Advances in Photosynthesis and Respiration, 2002, , 227-238.	1.0	11
245	Linkage between circadian clock and tricarboxylic acid cycle in Arabidopsis. Plant Signaling and Behavior, 2009, 4, 660-662.	1.2	11
246	<i>Agrobacterium tumefaciens</i> Tumor Morphology Root Plastid Localization and Preferential Usage of Hydroxylated Prenyl Donor Is Important for Efficient Gall Formation Â. Plant Physiology, 2012, 159, 1064-1072.	2.3	11
247	Chemical Promotion of Endogenous Amounts of ABA in <i>Arabidopsis thaliana</i> by a Natural Product, Theobroxide. Plant and Cell Physiology, 2016, 57, 986-999.	1.5	11
248	Global transcriptome analyses reveal that infection with chrysanthemum stunt viroid (CSVd) affects gene expression profile of chrysanthemum plants, but the genes involved in plant hormone metabolism and signaling may not be silencing target of CSVd-siRNAs. Plant Gene, 2019, 18, 100181.	1.4	11
249	Molecular Basis for Natural Vegetative Propagation via Regeneration in North American Lake Cress, Rorippa aquatica (Brassicaceae). Plant and Cell Physiology, 2020, 61, 353-369.	1.5	11
250	Genomic organization and transcriptional regulation of maize ZmRR1 and ZmRR2 encoding cytokinin-inducible response regulators. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1492, 216-220.	2.4	10
251	Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana. Journal of Plant Research, 2015, 128, 371-380.	1.2	10
252	Metabolite/phytohormone–gene regulatory networks in soybean organs under dehydration conditions revealed by integration analysis. Plant Journal, 2020, 103, 197-211.	2.8	10

#	Article	IF	CITATIONS
253	Nitrogen Nutrition Promotes Rhizome Bud Outgrowth via Regulation of Cytokinin Biosynthesis Genes and an Oryza longistaminata Ortholog of FINE CULM 1. Frontiers in Plant Science, 2021, 12, 670101.	1.7	10
254	Alterations in hormonal signals spatially coordinate distinct responses to DNA double-strand breaks in <i>Arabidopsis</i> roots. Science Advances, 2021, 7, .	4.7	10
255	Stimulation of Root Growth Induced by Aluminum in <i>Quercus serrata</i> Thunb. Is Related to Activity of Nitrate Reductase and Maintenance of IAA Concentration in Roots. American Journal of Plant Sciences, 2012, 03, 1619-1624.	0.3	10
256	Systemic Regulation of Iron Acquisition by <i>Arabidopsis</i> in Environments with Heterogeneous Iron Distributions. Plant and Cell Physiology, 2022, 63, 842-854.	1.5	10
257	Tuber-Specific Expression of Two Gibberellin Oxidase Transgenes from Arabidopsis Regulates over Wide Ranges the Potato Tuber Formation. Russian Journal of Plant Physiology, 2019, 66, 984-991.	0.5	8
258	Shoot nitrate underlies a perception of nitrogen satiety to trigger local and systemic signaling cascades in <i>Arabidopsis thaliana</i> . Soil Science and Plant Nutrition, 2019, 65, 56-64.	0.8	8
259	Differences in xylem development between Dutch and Japanese tomato (Solanum lycopersicum) correlate with cytokinin levels in hypocotyls. Annals of Botany, 2020, 126, 315-322.	1.4	8
260	Comprehensive analysis of the mechanisms underlying enhanced growth and root N acquisition in rice by the endophytic diazotroph, Burkholderia vietnamiensis RS1. Plant and Soil, 2020, 450, 537-555.	1.8	8
261	Accumulation of Maize Response Regulator Proteins in Mesophyll Cells after Cytokinin Treatment. Bioscience, Biotechnology and Biochemistry, 2002, 66, 1853-1858.	0.6	7
262	Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen-transformation activity, and metal accumulation. Journal of Hazardous Materials, 2009, 165, 967-973.	6.5	7
263	In vitro and in vivo effects of the phytohormone inhibitor fluridone against Neospora caninum infection. Parasitology International, 2016, 65, 319-322.	0.6	7
264	Molecular Characterization of LjABCG1, an ATP-Binding Cassette Protein in Lotus japonicus. PLoS ONE, 2015, 10, e0139127.	1.1	7
265	Regulation of ammonium acquisition and use in <i>Oryza longistaminata</i> ramets under nitrogen source heterogeneity. Plant Physiology, 2022, 188, 2364-2376.	2.3	7
266	Cloning of Maize Ferredoxin III Gene: Presence of a Unique Repetitive Nucleotide Sequence within an Intron Found in the 5'-Untranslated Region. Plant and Cell Physiology, 1997, 38, 1167-1170.	1.5	6
267	Plant Hormones. , 2010, , 9-125.		6
268	Apoplastic peroxidases enable an additional sulphite detoxification strategy and act as first line of defence upon exposure to sulphur containing gas. Environmental and Experimental Botany, 2019, 157, 140-150.	2.0	6
269	Restriction of cell proliferation in internal tissues via the synthesis of very-long-chain fatty acids in the epidermis. Plant Signaling and Behavior, 2013, 8, e25232.	1.2	5
270	Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome. PLoS ONE, 2015, 10, e0140559.	1.1	5

#	Article	IF	CITATIONS
271	Overexpression of <i>INCREASED CAMBIAL ACTIVITY</i> , a putative methyltransferase, increases cambial activity and plant growth. Journal of Integrative Plant Biology, 2016, 58, 874-889.	4.1	5
272	Crystallization and preliminary X-ray diffraction study of the histidine-containing phosphotransfer protein ZmHP1 from maize. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 366-368.	0.7	4
273	Cytokinin biosynthesis ISOPENTENYLTRANSFERASE genes are differentially expressed during phyllomorph development in the acaulescent Streptocarpus rexii (Gesneriaceae). South African Journal of Botany, 2017, 109, 96-111.	1.2	4
274	Consequences of <i>Sphaeropsis</i> tip blight disease for the phytohormone profile and antioxidative metabolism of its pine host. Plant, Cell and Environment, 2018, 41, 737-754.	2.8	4
275	Forchlorfenuron Application Induced Parthenocarpic Fruit Formation without Affecting Fruit Quality of Cucumber. Horticulturae, 2021, 7, 128.	1.2	4
276	Root-specific Reduction of Cytokinin Perception Enhances Shoot Growth in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2022, 63, 484-493.	1.5	4
277	Evolutionary alterations in gene expression and enzymatic activities of gibberellin 3-oxidase 1 in Oryza. Communications Biology, 2022, 5, 67.	2.0	4
278	Genome-wide responses to shoot nitrate satiety are attenuated by external ammonium in Arabidopsis thaliana. Soil Science and Plant Nutrition, 2020, 66, 317-327.	0.8	3
279	Nitrate-Dependent Modulation of Root System Architecture in Maize: A Balance between Strigolactone and Auxin Pathways. Plant and Cell Physiology, 2021, 62, 541-542.	1.5	3
280	Transcriptomic, Hormonomic and Metabolomic Analyses Highlighted the Common Modules Related to Photosynthesis, Sugar Metabolism and Cell Division in Parthenocarpic Tomato Fruits during Early Fruit Set. Cells, 2022, 11, 1420.	1.8	3
281	Preface. Journal of Experimental Botany, 2011, 62, 1347-1347.	2.4	2
282	Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1. Biochemical and Biophysical Research Communications, 2012, 423, 392-397.	1.0	2
283	Molecular and Biochemical Differences in Leaf Explants and the Implication for Regeneration Ability in Rorippa aquatica (Brassicaceae). Plants, 2020, 9, 1372.	1.6	2
284	Sixty Years ofPlant and Cell Physiology. Plant and Cell Physiology, 2019, 60, 1-3.	1.5	1
285	The maize coleoptiles do not perform typical C4 photosynthesis: investigation with special reference to anatomy, photosynthetic property, and gene expression. Plant Morphology, 2012, 24, 111-121.	0.1	1
286	Title is missing!. Kagaku To Seibutsu, 2015, 53, 421-422.	0.0	0
287	A Word from the New Editor-In-Chief. Plant and Cell Physiology, 2016, 57, 655-656.	1.5	0
288	Role of Underground Conditions in the Occurrence of Carnation Stunting and Proliferation Syndrome, and Relationship between the Symptoms and Endogenous Phytohormones. Japanese Society for Horticultural Science, 2011, 80, 182-189.	0.8	0

#	Article	IF	CITATIONS
289	Inorganic Nitrogen Signal Transduction for Expression of Maize C 4 PPC1. , 1998, , 3767-3772.		0
290	Targeted Mutagenesis Using RNA-guided Endonucleases in Mosses. Bio-protocol, 2017, 7, e2359.	0.2	0