Chris Kong-Chu Wong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/214928/chris-kong-chu-wong-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,106 103 31 52 h-index g-index citations papers 6.1 109 3,773 5.32 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
103	Bisphenol A and its analogues in sedimentary microplastics of Hong Kong. <i>Marine Pollution Bulletin</i> , 2021 , 164, 112090	6.7	2
102	mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. <i>Seminars in Cell and Developmental Biology</i> , 2021 ,	7.5	1
101	A laminin-based local regulatory network in the testis that supports spermatogenesis. <i>Seminars in Cell and Developmental Biology</i> , 2021 ,	7.5	2
100	Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. <i>Seminars in Cell and Developmental Biology</i> , 2021 , 121, 99-99	7.5	1
99	Characterization of stanniocalcin-1 expression in macrophage differentiation. <i>Translational Oncology</i> , 2021 , 14, 100881	4.9	5
98	Cadmium induces epithelial-mesenchymal transition and migration of renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2 dependent mechanism. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 207, 111480	7	10
97	The Non-hormonal Male Contraceptive Adjudin Exerts its Effects via MAPs and Signaling Proteins mTORC1/rpS6 and FAK-Y407. <i>Endocrinology</i> , 2021 , 162,	4.8	3
96	KIF15 supports spermatogenesis via its effects on Sertoli cell microtubule, actin, vimentin, and septin cytoskeletons. <i>Endocrinology</i> , 2021 , 162,	4.8	5
95	AKAP9 supports spermatogenesis through its effects on microtubule and actin cytoskeletons in the rat testis. <i>FASEB Journal</i> , 2021 , 35, e21925	0.9	1
94	Characterization of PFOS toxicity on in-vivo and ex-vivo mouse pancreatic islets. <i>Environmental Pollution</i> , 2021 , 289, 117857	9.3	2
93	Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. <i>Histology and Histopathology</i> , 2021 , 36, 249-265	1.4	4
92	Actin binding proteins, actin cytoskeleton and spermatogenesis - Lesson from toxicant models. <i>Reproductive Toxicology</i> , 2020 , 96, 76-89	3.4	9
91	Role of cell polarity and planar cell polarity (PCP) proteins in spermatogenesis. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2020 , 55, 71-87	8.7	1
90	Genome-wide analysis of MicroRNA-messenger RNA interactome in ex-vivo gill filaments, Anguilla japonica. <i>BMC Genomics</i> , 2020 , 21, 208	4.5	2
89	Comparative Analysis of PFOS and PFOA Toxicity on Sertoli Cells. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	15
88	A crustacean annotated transcriptome (CAT) database. <i>BMC Genomics</i> , 2020 , 21, 32	4.5	9
87	Effects of stanniocalcin-1 overexpressing hepatocellular carcinoma cells on macrophage migration. <i>PLoS ONE</i> , 2020 , 15, e0241932	3.7	2

(2018-2020)

86	Bisphenol compounds regulate decidualized stromal cells in modulating trophoblastic spheroid outgrowth and invasion in vitro <i>Biology of Reproduction</i> , 2020 , 102, 693-704	3.9	2
85	The roles of calcium-sensing receptor (CaSR) in heavy metals-induced nephrotoxicity. <i>Life Sciences</i> , 2020 , 242, 117183	6.8	7
84	Calcimimetic compound NPS R-467 protects against chronic cadmium-induced mouse kidney injury by restoring autophagy process. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 189, 110052	7	18
83	Microtubule Cytoskeleton and Spermatogenesis-Lesson From Studies of Toxicant Models. <i>Toxicological Sciences</i> , 2020 , 177, 305-315	4.4	5
82	Effects of Exposure to Perfluorooctane Sulfonate on Placental Functions. <i>Environmental Science & Environmental Science</i> & Environmental Science & Env	10.3	2
81	Effects of stanniocalcin-1 overexpressing hepatocellular carcinoma cells on macrophage migration 2020 , 15, e0241932		
80	Effects of stanniocalcin-1 overexpressing hepatocellular carcinoma cells on macrophage migration 2020 , 15, e0241932		
79	Effects of stanniocalcin-1 overexpressing hepatocellular carcinoma cells on macrophage migration 2020 , 15, e0241932		
7 ⁸	Effects of stanniocalcin-1 overexpressing hepatocellular carcinoma cells on macrophage migration 2020 , 15, e0241932		
77	Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the differentiation of embryonic stem cells towards pancreatic lineage and pancreatic beta cell function. <i>Environment International</i> , 2019 , 130, 104885	12.9	6
76	CAMSAP2 Is a Microtubule Minus-End Targeting Protein That Regulates BTB Dynamics Through Cytoskeletal Organization. <i>Endocrinology</i> , 2019 , 160, 1448-1467	4.8	10
75	Inhibition of Autophagy Alleviates Cadmium-Induced Mouse Spleen and Human B Cells Apoptosis. <i>Toxicological Sciences</i> , 2019 , 170, 109-122	4.4	16
74	F5-peptide enhances the efficacy of the non-hormonal male contraceptive adjudin. <i>Contraception</i> , 2019 , 99, 350-356	2.5	8
73	Contributions of City-Specific Fine Particulate Matter (PM) to Differential In Vitro Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 2881-2891	10.3	60
72	Myosin VIIa Supports Spermatid/Organelle Transport and Cell Adhesion During Spermatogenesis in the Rat Testis. <i>Endocrinology</i> , 2019 , 160, 484-503	4.8	12
71	mTORC1/rpS6 and spermatogenic function in the testis-insights from the adjudin model. <i>Reproductive Toxicology</i> , 2019 , 89, 54-66	3.4	8
71 70		3.4	14

68	Activation of Ca-sensing receptor as a protective pathway to reduce Cadmium-induced cytotoxicity in renal proximal tubular cells. <i>Scientific Reports</i> , 2018 , 8, 1092	4.9	25
67	Identification of immune-related genes in gill cells of Japanese eels (Anguilla japonica) in adaptation to water salinity changes. <i>Fish and Shellfish Immunology</i> , 2018 , 73, 288-296	4.3	16
66	Signaling pathways regulating blood-tissue barriers - Lesson from the testis. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2018 , 1860, 141-153	3.8	20
65	Cell polarity and planar cell polarity (PCP) in spermatogenesis. <i>Seminars in Cell and Developmental Biology</i> , 2018 , 81, 71-77	7.5	10
64	Cell polarity and cytoskeletons-Lesson from the testis. <i>Seminars in Cell and Developmental Biology</i> , 2018 , 81, 21-32	7.5	9
63	Dynein 1 supports spermatid transport and spermiation during spermatogenesis in the rat testis. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E924-E948	6	21
62	Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails. <i>Journal of Proteomics</i> , 2018 , 172, 36-48	3.9	6
61	Dietary Exposure to the Environmental Chemical, PFOS on the Diversity of Gut Microbiota, Associated With the Development of Metabolic Syndrome. <i>Frontiers in Microbiology</i> , 2018 , 9, 2552	5.7	37
60	Transcriptomic and methylomic analysis reveal the toxicological effect of 2,3,7,8-Tetrachlorodibenzodioxin on human embryonic stem cell. <i>Chemosphere</i> , 2018 , 206, 663-673	8.4	4
59	GPER/Hippo-YAP signal is involved in Bisphenol S induced migration of triple negative breast cancer (TNBC) cells. <i>Journal of Hazardous Materials</i> , 2018 , 355, 1-9	12.8	33
58	Transcriptome sequencing reveals prenatal PFOS exposure on liver disorders. <i>Environmental Pollution</i> , 2017 , 223, 416-425	9.3	20
57	The measurement of bisphenol A and its analogues, perfluorinated compounds in twenty species of freshwater and marine fishes, a time-trend comparison and human health based assessment. Marine Pollution Bulletin, 2017, 124, 743-752	6.7	22
56	Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/転atenin signaling and epithelial-to-mesenchymal transition. <i>Oncotarget</i> , 2017 , 8, 25	897-259	14 ⁸
55	Transcriptomic and Functional Analyses on the Effects of Dioxin on Insulin Secretion of Pancreatic Islets and ₹Cells. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	6
54	Effects of in Utero PFOS Exposure on Transcriptome, Lipidome, and Function of Mouse Testis. <i>Environmental Science & Environmental Science & Environme</i>	10.3	32
53	Bisphenol A alters gut microbiome: Comparative metagenomics analysis. <i>Environmental Pollution</i> , 2016 , 218, 923-930	9.3	88
52	Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust. <i>Environmental Science & Environmental Scien</i>	10.3	33
51	Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. <i>Nature Communications</i> , 2016 , 7, 10872	17.4	286

(2014-2016)

50	Hypoxia causes transgenerational impairments in reproduction of fish. <i>Nature Communications</i> , 2016 , 7, 12114	17.4	87
49	Is toxicant-induced Sertoli cell injury in vitro a useful model to study molecular mechanisms in spermatogenesis?. <i>Seminars in Cell and Developmental Biology</i> , 2016 , 59, 141-156	7.5	34
48	Activation of GPER suppresses epithelial mesenchymal transition of triple negative breast cancer cells via NF- B signals. <i>Molecular Oncology</i> , 2016 , 10, 775-88	7.9	42
47	Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. <i>FASEB Journal</i> , 2016 , 30, 1436-52	0.9	32
46	Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. <i>Scientific Reports</i> , 2016 , 6, 29667	4.9	25
45	Pathogenesis of POLR1C-dependent Type 3 Treacher Collins Syndrome revealed by a zebrafish model. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2016 , 1862, 1147-58	6.9	26
44	Formin 1 Regulates Microtubule and F-Actin Organization to Support Spermatid Transport During Spermatogenesis in the Rat Testis. <i>Endocrinology</i> , 2016 , 157, 2894-908	4.8	21
43	Fatty liver disease induced by perfluorooctane sulfonate: Novel insight from transcriptome analysis. <i>Chemosphere</i> , 2016 , 159, 166-177	8.4	28
42	Transcriptomic responses of corpuscle of Stannius gland of Japanese eels (Anguilla japonica) to changes in water salinity. <i>Scientific Reports</i> , 2015 , 5, 9836	4.9	20
41	Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. <i>FASEB Journal</i> , 2015 , 29, 3788-805	0.9	29
40	Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity. <i>Endocrinology</i> , 2015 , 156, 2969-83	4.8	31
39	Tissue-specific transcriptome assemblies of the marine medaka Oryzias melastigma and comparative analysis with the freshwater medaka Oryzias latipes. <i>BMC Genomics</i> , 2015 , 16, 135	4.5	40
38	Genetic Basis of Differential Heat Resistance between Two Species of Congeneric Freshwater Snails: Insights from Quantitative Proteomics and Base Substitution Rate Analysis. <i>Journal of Proteome Research</i> , 2015 , 14, 4296-308	5.6	25
37	Characterization of stanniocalcin 1 binding and signaling in gill cells of Japanese eels. <i>Journal of Molecular Endocrinology</i> , 2015 , 54, 305-14	4.5	4
36	Data for transcriptomic and iTRAQ proteomic analysis of Anguilla japonica gills in response to osmotic stress. <i>Data in Brief</i> , 2015 , 3, 120-5	1.2	2
35	Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel. <i>BMC Genomics</i> , 2015 , 16, 1072	4.5	22
34	Stanniocalcin-1 Reduces Tumor Size in Human Hepatocellular Carcinoma. <i>PLoS ONE</i> , 2015 , 10, e0139977	7 3.7	15
33	Chemical and biological characterization of air particulate matter 2.5, collected from five cities in China. <i>Environmental Pollution</i> , 2014 , 194, 188-195	9.3	52

32	Involvement of activating ERK1/2 through G protein coupled receptor 30 and estrogen receptor 细n low doses of bisphenol A promoting growth of Sertoli TM4 cells. <i>Toxicology Letters</i> , 2014 , 226, 81-9	4.4	104
31	Role of non-receptor protein tyrosine kinases in spermatid transport during spermatogenesis. <i>Seminars in Cell and Developmental Biology</i> , 2014 , 30, 65-74	7.5	19
30	iTRAQ-based quantitative proteomic analysis reveals acute hypo-osmotic responsive proteins in the gills of the Japanese eel (Anguilla japonica). <i>Journal of Proteomics</i> , 2014 , 105, 133-43	3.9	18
29	Methionine oxidation in albumin by fine haze particulate matter: an in vitro and in vivo study. Journal of Hazardous Materials, 2014 , 274, 384-91	12.8	24
28	Perinatal exposure to perfluorooctane sulfonate affects glucose metabolism in adult offspring. <i>PLoS ONE</i> , 2014 , 9, e87137	3.7	57
27	Differential effects of c-Src and c-Yes on the endocytic vesicle-mediated trafficking events at the Sertoli cell blood-testis barrier: an in vitro study. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2014 , 307, E553-62	6	24
26	Germ cell transport across the seminiferous epithelium during spermatogenesis. <i>Physiology</i> , 2014 , 29, 286-98	9.8	66
25	Perfluorooctanesulfonate (PFOS) perturbs male rat Sertoli cell blood-testis barrier function by affecting F-actin organization via p-FAK-Tyr(407): an in vitro study. <i>Endocrinology</i> , 2014 , 155, 249-62	4.8	87
24	N-wasp is required for structural integrity of the blood-testis barrier. <i>PLoS Genetics</i> , 2014 , 10, e1004447	6	23
23	Cytokines, polarity proteins, and endosomal protein trafficking and signaling-the sertoli cell blood-testis barrier system in vitro as a study model. <i>Methods in Enzymology</i> , 2014 , 534, 181-94	1.7	15
22	Partitioning behavior of perfluorinated compounds between sediment and biota in the Pearl River Delta of South China. <i>Marine Pollution Bulletin</i> , 2014 , 83, 148-54	6.7	21
21	The apical ES-BTB-BM functional axis is an emerging target for toxicant-induced infertility. <i>Trends in Molecular Medicine</i> , 2013 , 19, 396-405	11.5	25
20	Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations. <i>Journal of Hazardous Materials</i> , 2013 , 261, 763-9	12.8	83
19	Stanniocalcin-1 and -2 promote angiogenic sprouting in HUVECs via VEGF/VEGFR2 and angiopoietin signaling pathways. <i>Molecular and Cellular Endocrinology</i> , 2013 , 374, 73-81	4.4	46
18	Targeting testis-specific proteins to inhibit spermatogenesis: lesson from endocrine disrupting chemicals. <i>Expert Opinion on Therapeutic Targets</i> , 2013 , 17, 839-55	6.4	46
17	Evolution and roles of stanniocalcin. <i>Molecular and Cellular Endocrinology</i> , 2012 , 349, 272-80	4.4	142
16	PFOS-induced hepatic steatosis, the mechanistic actions on b xidation and lipid transport. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2012 , 1820, 1092-101	4	92
15	Effects of perinatal exposure to bisphenol A and di(2-ethylhexyl)-phthalate on gonadal development of male mice. <i>Environmental Science and Pollution Research</i> , 2011 , 19, 2515-27	5.1	39

LIST OF PUBLICATIONS

14	Stanniocalcin-1 regulates re-epithelialization in human keratinocytes. <i>PLoS ONE</i> , 2011 , 6, e27094	3.7	22
13	Assessment of risk to humans of bisphenol A in marine and freshwater fish from Pearl River Delta, China. <i>Chemosphere</i> , 2011 , 85, 122-8	8.4	64
12	Risk assessment for human consumption of perfluorinated compound-contaminated freshwater and marine fish from Hong Kong and Xiamen. <i>Chemosphere</i> , 2011 , 85, 277-83	8.4	79
11	Sp1 is a transcription repressor to stanniocalcin-1 expression in TSA-treated human colon cancer cells, HT29. <i>Journal of Cellular Biochemistry</i> , 2011 , 112, 2089-96	4.7	23
10	nbce1 and H+fltpase mRNA expression are stimulated in the mitochondria-rich cells of freshwater-acclimating Japanese eels (Anguilla[Japonica). <i>Canadian Journal of Zoology</i> , 2011 , 89, 348-35	55 ^{1.5}	12
9	Identification and characterization of the hypoxia-responsive element in human stanniocalcin-1 gene. <i>Molecular and Cellular Endocrinology</i> , 2010 , 314, 118-27	4.4	40
8	Histone deacetylase inhibitor-induced cellular apoptosis involves stanniocalcin-1 activation. <i>Experimental Cell Research</i> , 2008 , 314, 2975-84	4.2	30
7	Effects of dexamethasone and dibutyryl cAMP on stanniocalcin-1 mRNA expression in rat primary Sertoli and Leydig cells. <i>Molecular and Cellular Endocrinology</i> , 2008 , 283, 96-103	4.4	15
6	Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 346, 1181-90	3.4	102
5	Title at a STCDD in madulation the average of Contail call according to advate and analysis for		
	Effects of TCDD in modulating the expression of Sertoli cell secretory products and markers for cell-cell interaction. <i>Toxicology</i> , 2005 , 206, 111-23	4.4	21
4		4.4	21
	cell-cell interaction. <i>Toxicology</i> , 2005 , 206, 111-23 Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells.		
4	cell-cell interaction. <i>Toxicology</i> , 2005 , 206, 111-23 Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells. <i>Endocrinology</i> , 2005 , 146, 4951-60 Dioxin-like components in human breast milk collected from Hong Kong and Guangzhou.	4.8	86