Joana M Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2149140/publications.pdf Version: 2024-02-01

ΙΟΛΝΑ Μ SUVA

#	Article	IF	CITATIONS
1	Surface Functionalization of Ureteral Stents-Based Polyurethane: Engineering Antibacterial Coatings. Materials, 2022, 15, 1676.	1.3	7
2	Comparing deep eutectic solvents and cyclodextrin complexes as curcumin vehicles for blue-light antimicrobial photodynamic therapy approaches. Photochemical and Photobiological Sciences, 2022, , 1.	1.6	1
3	Untangling the bioactive properties of therapeutic deep eutectic solvents based on natural terpenes. Current Research in Chemical Biology, 2021, 1, 100003.	1.4	15
4	Therapeutic deep eutectic solvents assisted the encapsulation of curcumin in alginate-chitosan hydrogel beads. Sustainable Chemistry and Pharmacy, 2021, 24, 100553.	1.6	11
5	A Fibrin Coating Method of Polypropylene Meshes Enables the Adhesion of Menstrual Blood-Derived Mesenchymal Stromal Cells: A New Delivery Strategy for Stem Cell-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 13385.	1.8	7
6	Optimal Design of THEDES Based on Perillyl Alcohol and Ibuprofen. Pharmaceutics, 2020, 12, 1121.	2.0	18
7	Use of hemostatic agents for surgical bleeding in laparoscopic partial nephrectomy: Biomaterials perspective. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3099-3123.	1.6	10
8	Terpene-Based Natural Deep Eutectic Systems as Efficient Solvents To Recover Astaxanthin from Brown Crab Shell Residues. ACS Sustainable Chemistry and Engineering, 2020, 8, 2246-2259.	3.2	66
9	Unveil the Anticancer Potential of Limomene Based Therapeutic Deep Eutectic Solvents. Scientific Reports, 2019, 9, 14926.	1.6	60
10	Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Applied Bio Materials, 2019, 2, 4346-4355.	2.3	96
11	Light-triggered release of photocaged therapeutics - Where are we now?. Journal of Controlled Release, 2019, 298, 154-176.	4.8	105
12	Development of innovative medical devices by dispersing fatty acid eutectic blend on gauzes using supercritical particle generation processes. Materials Science and Engineering C, 2019, 99, 599-610.	3.8	22
13	Deep Eutectic Solvents for Enzymatic Esterification of Racemic Menthol. ACS Sustainable Chemistry and Engineering, 2019, 7, 19943-19950.	3.2	39
14	A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustainable Chemistry and Pharmacy, 2019, 14, 100192.	1.6	36
15	Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852.	1.2	12
16	Natural deep eutectic systems as alternative nontoxic cryoprotective agents. Cryobiology, 2018, 83, 15-26.	0.3	89
17	Design of Functional Therapeutic Deep Eutectic Solvents Based on Choline Chloride and Ascorbic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 10355-10363.	3.2	93
18	Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate. Acta Biomaterialia, 2017, 51, 279-293.	4.1	62

JOANA M SILVA

#	Article	IF	CITATIONS
19	Green solvents for enhanced impregnation processes in biomedicine. Current Opinion in Green and Sustainable Chemistry, 2017, 5, 82-87.	3.2	33
20	Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Materials Science and Engineering C, 2017, 71, 1122-1134.	3.8	42
21	Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. Small, 2016, 12, 4308-4342.	5.2	100
22	Multilayered Hollow Tubes as Blood Vessel Substitutes. ACS Biomaterials Science and Engineering, 2016, 2, 2304-2314.	2.6	19
23	Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties. Soft Matter, 2016, 12, 1200-1209.	1.2	18
24	Unraveling the Effect of the Hydration Level on the Molecular Mobility of Nanolayered Polymeric Systems. Macromolecular Rapid Communications, 2015, 36, 405-412.	2.0	18
25	Chitosan–alginate multilayered films with gradients of physicochemical cues. Journal of Materials Chemistry B, 2015, 3, 4555-4568.	2.9	42
26	pH Responsiveness of Multilayered Films and Membranes Made of Polysaccharides. Langmuir, 2015, 31, 11318-11328.	1.6	58
27	Magnetically Multilayer Polysaccharide Membranes for Biomedical Applications. ACS Biomaterials Science and Engineering, 2015, 1, 1016-1025.	2.6	25
28	Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers. Advanced Healthcare Materials, 2014, 3, 433-440.	3.9	48
29	Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate. Biomacromolecules, 2014, 15, 3817-3826.	2.6	88
30	Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering. PLoS ONE, 2013, 8, e55451.	1.1	105