William C Dougall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2149059/publications.pdf

Version: 2024-02-01

566801 940134 1,533 18 15 16 citations h-index g-index papers 20 20 20 2519 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>TIGIT</scp> and <scp>CD</scp> 96: new checkpoint receptor targets for cancer immunotherapy. Immunological Reviews, 2017, 276, 112-120.	2.8	351
2	TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood, 2018, 132, 1689-1694.	0.6	198
3	Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy. Clinical Cancer Research, 2016, 22, 5183-5188.	3.2	171
4	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	7.0	110
5	CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Journal of Clinical Investigation, 2018, 128, 2613-2625.	3.9	91
6	CD96 Is an Immune Checkpoint That Regulates CD8+ T-cell Antitumor Function. Cancer Immunology Research, 2019, 7, 559-571.	1.6	79
7	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	6.6	79
8	Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nature Reviews Clinical Oncology, 2018, 15, 676-693.	12.5	77
9	Co-administration of RANKL and CTLA4 Antibodies Enhances Lymphocyte-Mediated Antitumor Immunity in Mice. Clinical Cancer Research, 2017, 23, 5789-5801.	3.2	70
10	RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. Oncolmmunology, 2018, 7, e1431088.	2.1	67
11	Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2020, 26, 3671-3681.	3 . 2	53
12	An observational study of concomitant immunotherapies and denosumab in patients with advanced melanoma or lung cancer. Oncolmmunology, 2018, 7, e1480301.	2.1	48
13	Deficiency of host CD96 and PD-1 or TIGIT enhances tumor immunity without significantly compromising immune homeostasis. Oncolmmunology, 2018, 7, e1445949.	2.1	46
14	CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity. Oncolmmunology, 2018, 7, e1424677.	2.1	44
15	The immune checkpoint CD96 defines a distinct lymphocyte phenotype and is highly expressed on tumorâ€infiltrating TÂcells. Immunology and Cell Biology, 2019, 97, 152-164.	1.0	29
16	Pharmacodynamics of Pre-Operative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC): study protocol for a multicentre, open-label, phase 1B/2, translational trial (POPCORN). Trials, 2019, 20, 753.	0.7	20
17	An observational study of concomitant immunotherapies and denosumab in patients with advanced melanoma or lung cancer Journal of Clinical Oncology, 2018, 36, e21001-e21001.	0.8	O
18	Preoperative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC) (POPCORN) Journal of Clinical Oncology, 2019, 37, TPS129-TPS129.	0.8	0