Eun-Jung Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2148867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Living with a giant, flowering parasite: metabolic differences between Tetrastigma loheri Gagnep. (Vitaceae) shoots uninfected and infected with Rafflesia (Rafflesiaceae) and potential applications for propagation. Planta, 2022, 255, 4.	3.2	4
2	Effect of Dietary Grapes on Female C57BL6/J Mice Consuming a High-Fat Diet: Behavioral and Genetic Changes. Antioxidants, 2022, 11, 414.	5.1	4
3	Physalactone and 4β-Hydroxywithanolide E Isolated from Physalis peruviana Inhibit LPS-Induced Expression of COX-2 and iNOS Accompanied by Abatement of Akt and STAT1. Journal of Natural Products, 2019, 82, 492-499.	3.0	16
4	Synthesis and Structure–Activity Relationships of Tetrahydro-β-carboline Derivatives as Anticancer and Cancer-chemopreventive Agents. Anticancer Research, 2018, 38, 4425-4433.	1.1	13
5	Resveratrol as an Activator or Inhibitor of Enzymes and Proteins. , 2018, , 55-113.		2
6	Structure-activity relationships and docking studies of synthetic 2-arylindole derivatives determined with aromatase and quinone reductase 1. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5393-5399.	2.2	19
7	Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2755-2759.	2.2	46
8	Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (<i>Morinda) Tj ETQq0 0</i>	0 rgBT /Ov	verlock 10 Tf
9	Endophytic fungi associated with <i>Taxus fuana</i> (West Himalayan Yew) of Pakistan: potential bio-resources for cancer chemopreventive agents. Pharmaceutical Biology, 2016, 54, 2547-2554.	2.9	21
10	Anti-inflammatory triterpenes from the apical bud of Gardenia sootepensis. Fìtoterapìâ, 2016, 114, 92-97.	2.2	16
11	Induction of cell cycle arrest and apoptosis with downregulation of Hsp90 client proteins and histone modification by 4βâ€hydroxywithanolide E isolated from <i>Physalis peruviana</i> . Molecular Nutrition and Food Research, 2016, 60, 1482-1500.	3.3	25
12	Evidence supporting the conceptual framework of cancer chemoprevention in canines. Scientific Reports, 2016, 6, 26500.	3.3	2

	Reports, 2016, 6, 26500.		
13	Synthesis, molecular docking and anticancer studies of peptides and iso-peptides. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2980-2984.	2.2	9
14	The pharmacology of resveratrol in animals and humans. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1071-1113.	3.8	230
15	Determination of the absolute configuration of chaetoviridins and other bioactive azaphilones from the endophytic fungus Chaetomium globosum. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4719-4723.	2.2	18
16	Inhibitory Effect of a Callophycin A Derivative on iNOS Expression via Inhibition of Akt in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Journal of Natural Products, 2014, 77, 527-535.	3.0	8
17	Antioxidant Marine Products in Cancer Chemoprevention. Antioxidants and Redox Signaling, 2013, 19, 115-138.	5.4	42
18	Suppression of Src/ERK and GSK-3/ \hat{l}^2 -catenin signaling by pinosylvin inhibits the growth of human	3.6	44

colorectal cancer cells. Food and Chemical Toxicology, 2013, 55, 424-433. g 18

Eun-Jung Park

#	Article	IF	CITATIONS
19	Flavonoids in Cancer Prevention. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 836-851.	1.7	64
20	Induction of Apoptosis by 3-Amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11 <i>H</i> - indeno[1,2- <i>c</i>]isoquinoline via Modulation of MAPKs (p38 and c-Jun N-terminal Kinase) and c-Myc in HL-60 Human Leukemia Cells. Journal of Natural Products, 2012, 75, 378-384.	3.0	11
21	Suppression of Nitric Oxide Synthase by Thienodolin in Lipopolysaccharide-stimulated RAW 264.7 Murine Macrophage Cells. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	2
22	Antimetastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. Journal of Nutritional Biochemistry, 2012, 23, 946-952.	4.2	35
23	Suppression of nitric oxide synthase by thienodolin in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Natural Product Communications, 2012, 7, 789-94.	0.5	13
24	Inhibition of Lipopolysaccharide-Induced Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression by 4-[(2′- <i>O</i> -acetyl-α- <scp>L</scp> -Rhamnosyloxy)Benzyl]Isothiocyanate from <i>Moringa oleifera</i> . Nutrition and Cancer, 2011, 63, 971-982.	2.0	70
25	Nuclear Factor E2–Related Factor 2–Mediated Induction of NAD(P)H:Quinone Oxidoreductase 1 by 3,5-Dimethoxy-trans-stilbene. Journal of Pharmacological Sciences, 2011, 116, 89-96.	2.5	12
26	Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by epimuqubilin A via IKK/IIºB/NF-IºB pathways in lipopolysaccharide-stimulated RAW 264.7 cells. Phytochemistry Letters, 2011, 4, 426-431.	1.2	24
27	Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Archives of Pharmacal Research, 2011, 34, 299-307.	6.3	47
28	Induction of Retinoid X Receptor Activity and Consequent Upregulation of p21WAF1/CIP1 by Indenoisoquinolines in MCF7 Cells. Cancer Prevention Research, 2011, 4, 592-607.	1.5	30
29	Pinosylvin Suppresses LPS-stimulated Inducible Nitric Oxide Synthase Expression via the MyD88-independent, but TRIF-dependent Downregulation of IRF-3 Signaling Pathway in Mouse Macrophage Cells. Cellular Physiology and Biochemistry, 2011, 27, 353-362.	1.6	22
30	Repeated-dose toxicity attributed to aluminum nanoparticles following 28-day oral administration, particularly on gene expression in mouse brain. Toxicological and Environmental Chemistry, 2011, 93, 120-133.	1.2	35
31	Induction of Inflammatory Responses in Mice Treated with Cerium Oxide Nanoparticles by Intratracheal Instillation. Journal of Health Science, 2010, 56, 387-396.	0.9	31
32	Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology, 2010, 275, 65-71.	4.2	124
33	Fast preparation of citrate-stabilized silver nanoplates and its nanotoxicity. Korean Journal of Chemical Engineering, 2010, 27, 1897-1900.	2.7	4
34	Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicology and Applied Pharmacology, 2010, 244, 226-233.	2.8	74
35	Induction of Inflammatory Responses by Carbon Fullerene (C60) in Cultured RAW264.7 Cells and in Intraperitoneally Injected Mice. Toxicological Research, 2010, 26, 267-273.	2.1	10
36	Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environmental Toxicology and Pharmacology, 2010, 30, 162-168.	4.0	470

Eun-Jung Park

#	Article	IF	CITATIONS
37	Induction of oxidative stress and inflammatory cytokines by manganese chloride in cultured T98G cells, human brain glioblastoma cell line. Toxicology in Vitro, 2010, 24, 472-479.	2.4	24
38	Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 2010, 24, 872-878.	2.4	645
39	Cancer Chemopreventive and Anticancer Evaluation of Extracts and Fractions from Marine Macro- and Microorganisms Collected from Twilight Zone Waters around Guam[1]. Natural Product Communications, 2009, 4, 1934578X0900401.	0.5	7
40	Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology, 2009, 260, 37-46.	4.2	167
41	Novel small molecule activators of β-catenin-mediated signaling pathway: structure–activity relationships of indirubins. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2282-2284.	2.2	16
42	Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology, 2009, 259, 113-121.	4.2	134
43	Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicology Letters, 2009, 184, 18-25.	0.8	446
44	Induction of pro-inflammatory signals by 1-nitropyrene in cultured BEAS-2B cells. Toxicology Letters, 2009, 184, 126-133.	0.8	53
45	Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles. Toxicological Research, 2009, 25, 195-201.	2.1	3
46	Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environmental Monitoring and Assessment, 2008, 137, 441-449.	2.7	79
47	Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 2008, 245, 90-100.	4.2	481
48	Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicology Letters, 2008, 180, 222-229.	0.8	485
49	Induction of oxidative stress in human Chang liver cells by octachlorostyrene, the persistent and bioaccumulative toxicant. Toxicology in Vitro, 2008, 22, 367-375.	2.4	10
50	Induction of reactive oxygen species and apoptosis in BEAS-2B cells by mercuric chloride. Toxicology in Vitro, 2007, 21, 789-794.	2.4	67
51	Gene Expression Profiles of Cultured Rat Cardiomyocytes (H9C2 Cells) in Response to Arsenic Trioxide at Subcytotoxic Level and Oxidative Stress. Journal of Health Science, 2006, 52, 512-521.	0.9	9
52	Synthesis and inhibitory effects of pinosylvin derivatives on prostaglandin E2 production in lipopolysaccharide-induced mouse macrophage cells. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5895-5898.	2.2	49