Aiko K Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2148858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soleus H-reflex modulation during a double-legged drop landing task. Experimental Brain Research, 2022, , 1.	0.7	1
2	Features and physiology of spinal stretch reflexes in people with chronic spinal cord injury. , 2022, , 365-375.		1
3	Hâ€reflex conditioning during locomotion in people with spinal cord injury. Journal of Physiology, 2021, 599, 2453-2469.	1.3	31
4	Can Operant Conditioning of EMG-Evoked Responses Help to Target Corticospinal Plasticity for Improving Motor Function in People With Multiple Sclerosis?. Frontiers in Neurology, 2020, 11, 552.	1.1	2
5	Effect of Ankle Angles on the Soleus H-Reflex Excitability During Standing. Motor Control, 2020, 24, 189-203.	0.3	3
6	Modulation of soleus stretch reflexes during walking in people with chronic incomplete spinal cord injury. Experimental Brain Research, 2019, 237, 2461-2479.	0.7	17
7	Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. Journal of Neurophysiology, 2019, 122, 435-446.	0.9	18
8	Operant conditioning of the motor-evoked potential and locomotion in people with and without chronic incomplete spinal cord injury. Journal of Neurophysiology, 2019, 121, 853-866.	0.9	9
9	Operant conditioning of the tibialis anterior motor evoked potential in people with and without chronic incomplete spinal cord injury. Journal of Neurophysiology, 2018, 120, 2745-2760.	0.9	6
10	Effects of Sensorimotor Rhythm Modulation on the Human Flexor Carpi Radialis H-Reflex. Frontiers in Neuroscience, 2018, 12, 505.	1.4	5
11	Operant Up-Conditioning of the Tibialis Anterior Motor-Evoked Potential in Multiple Sclerosis: Feasibility Case Studies. Neural Plasticity, 2018, 2018, 1-10.	1.0	10
12	Nothing either good or bad but action makes it so. Journal of Physiology, 2017, 595, 1003-1004.	1.3	0
13	Rehabilitation Research at the National Institutes of Health: Moving the Field Forward (Executive) Tj ETQq1 1 0.78	84314 rgB⁻ 0.5	T /Overlock
14	Rehabilitation research at the National Institutes of Health: Moving the field forward (Executive) Tj ETQq0 0 0 rgB	T (Qverloc	k 10 Tf 50 2
15	Rehabilitation Research at the National Institutes of Health: Moving the Field Forward (Executive) Tj ETQq1 1 0.78	84314 rgB ⁻ 0.1	T <u>f</u> Overlock
16	Rehabilitation research at the National Institutes of Health moving the field forward (executive) Tj ETQq0 0 0 rgB ⁻	[Overlock	2 10 Tf 50 14
17	Targeted neuroplasticity for rehabilitation. Progress in Brain Research, 2015, 218, 157-172.	0.9	34
18	Restoring Walking after Spinal Cord Injury. Neuroscientist, 2015, 21, 203-215.	2.6	46

Αικό Κ Τηόμρου

#	ARTICLE	IF	CITATIONS
19	Operant conditioning of spinal reflexes: from basic science to clinical therapy. Frontiers in Integrative Neuroscience, 2014, 8, 25.	1.0	95
20	The Simplest Motor Skill. Exercise and Sport Sciences Reviews, 2014, 42, 82-90.	1.6	27
21	Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans. Journal of Neurophysiology, 2014, 112, 1439-1446.	0.9	23
22	Operant Conditioning of a Spinal Reflex Can Improve Locomotion after Spinal Cord Injury in Humans. Journal of Neuroscience, 2013, 33, 2365-2375.	1.7	125
23	Soleus Hâ€reflex operant conditioning changes the Hâ€reflex recruitment curve. Muscle and Nerve, 2013, 47, 539-544.	1.0	24
24	Hâ€reflex modulation in the human medial and lateral gastrocnemii during standing and walking. Muscle and Nerve, 2012, 45, 116-125.	1.0	22
25	Repetitive common peroneal nerve stimulation increases ankle dorsiflexor motor evoked potentials in in incomplete spinal cord lesions. Experimental Brain Research, 2011, 210, 143-152.	0.7	27
26	Does Functional Electrical Stimulation for Foot Drop Strengthen Corticospinal Connections?. Neurorehabilitation and Neural Repair, 2010, 24, 168-177.	1.4	175
27	Acquisition of a Simple Motor Skill: Task-Dependent Adaptation Plus Long-Term Change in the Human Soleus H-Reflex. Journal of Neuroscience, 2009, 29, 5784-5792.	1.7	113
28	Spinal Reflexes in Ankle Flexor and Extensor Muscles After Chronic Central Nervous System Lesions and Functional Electrical Stimulation. Neurorehabilitation and Neural Repair, 2009, 23, 133-142.	1.4	44
29	Muscle Reflexes in Motion. Exercise and Sport Sciences Reviews, 2006, 34, 145-153.	1.6	46
30	Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles. Experimental Brain Research, 2006, 170, 216-226.	0.7	47
31	A Multicenter Trial of a Footdrop Stimulator Controlled by a Tilt Sensor. Neurorehabilitation and Neural Repair, 2006, 20, 371-379.	1.4	110