Michael R Koelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2148855/publications.pdf

Version: 2024-02-01

38 papers

2,736 citations

218381 26 h-index 315357 38 g-index

43 all docs

43 docs citations

times ranked

43

2305 citing authors

#	Article	IF	Citations
1	Conditional targeting of phosphatidylserine decarboxylase to lipid droplets. Biology Open, 2021, 10, .	0.6	10
2	The neural G protein $\widehat{Gl}\pm 0$ tagged with GFP at an internal loop is functional in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
3	Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the <i>C. elegans</i> Egg-Laying Circuit. Journal of Neuroscience, 2020, 40, 7475-7488.	1.7	19
4	Serotonin and neuropeptides are both released by the HSN command neuron to initiate Caenorhabditis elegans egg laying. PLoS Genetics, 2019, 15, e1007896.	1.5	51
5	The protein kinase G orthologs, EGL-4 and PKG-2, mediate serotonin-induced paralysis of. MicroPublication Biology, 2019, 2019, .	0.1	2
6	Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WormBook, 2018, 2018, 1-52.	5.3	34
7	Lipid trafficking by yeast Snx4 family SNX-BAR proteins promotes autophagy and vacuole membrane fusion. Molecular Biology of the Cell, 2018, 29, 2190-2200.	0.9	43
8	Neural Architecture of Hunger-Dependent Multisensory Decision Making in C.Âelegans. Neuron, 2016, 92, 1049-1062.	3.8	101
9	Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation. Molecular Biology and Evolution, 2016, 33, 820-837.	3.5	32
10	Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. ELife, $2016, 5, .$	2.8	80
11	An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of <i>Caenorhabditis elegans</i>	1.2	32
12	Postsynaptic ERG Potassium Channels Limit Muscle Excitability to Allow Distinct Egg-Laying Behavior States in <i>Caenorhabditis elegans</i> Journal of Neuroscience, 2013, 33, 761-775.	1.7	48
13	LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans. ELife, 2013, 2, e00378.	2.8	28
14	Receptors and Other Signaling Proteins Required for Serotonin Control of Locomotion in <i>Caenorhabditis elegans</i>	1.2	66
15	The G protein regulator AGS-3 allows C. elegans to alter behaviors in response to food deprivation. Worm, 2012, 1, 56-60.	1.0	1
16	Two types of chloride transporters are required for GABA _A receptor-mediated inhibition in <i>C. elegans</i> . EMBO Journal, 2011, 30, 1852-1863.	3.5	33
17	AGS-3 Alters <i>Caenorhabditis elegans</i> Behavior after Food Deprivation via RIC-8 Activation of the Neural G Protein Gî± _o . Journal of Neuroscience, 2011, 31, 11553-11562.	1.7	29
18	RSBP-1 Is a Membrane-targeting Subunit Required by the $G\hat{l}\pm\langle sub\rangle q\langle sub\rangle$ -specific But Not the $G\hat{l}\pm\langle sub\rangle e\langle sub\rangle$ -specific R7 Regulator of G protein Signaling in (i) Caenorhabditis elegans (i). Molecular Biology of the Cell, 2010, 21, 232-243.	0.9	13

#	Article	IF	CITATIONS
19	A Conserved Protein Interaction Interface on the Type 5 G Protein \hat{l}^2 Subunit Controls Proteolytic Stability and Activity of R7 Family Regulator of G Protein Signaling Proteins. Journal of Biological Chemistry, 2010, 285, 41100-41112.	1.6	15
20	The Potassium Chloride Cotransporter KCC-2 Coordinates Development of Inhibitory Neurotransmission and Synapse Structure in Caenorhabditis elegans. Journal of Neuroscience, 2009, 29, 9943-9954.	1.7	66
21	Chapter 2 Insights into RGS Protein Function from Studies in Caenorhabditis elegans. Progress in Molecular Biology and Translational Science, 2009, 86, 15-47.	0.9	9
22	Regulation of Serotonin Biosynthesis by the G Proteins Gα0 and Gαq Controls Serotonin Signaling in <i>Caenorhabditis elegans</i>	1.2	59
23	A Specific Subset of Transient Receptor Potential Vanilloid-Type Channel Subunits in Caenorhabditis elegans Endocrine Cells Function as Mixed Heteromers to Promote Neurotransmitter Release. Genetics, 2007, 175, 93-105.	1.2	57
24	C. elegans G Protein Regulator RGS-3 Controls Sensitivity to Sensory Stimuli. Neuron, 2007, 53, 39-52.	3.8	59
25	Biogenic amine neurotransmitters in C. elegans. WormBook, 2007, , 1-15.	5.3	207
26	Heterotrimeric G Protein Signaling: Getting inside the Cell. Cell, 2006, 126, 25-27.	13.5	33
27	Domains, Amino Acid Residues, and New Isoforms of Caenorhabditis elegans Diacylglycerol Kinase 1 (DGK-1) Important for Terminating Diacylglycerol Signaling in Vivo*. Journal of Biological Chemistry, 2005, 280, 2730-2736.	1.6	28
28	Caenorhabditus elegans Arrestin Regulates Neural G Protein Signaling and Olfactory Adaptation and Recovery. Journal of Biological Chemistry, 2005, 280, 24649-24662.	1.6	47
29	Genetic Analysis of RGS Protein Function in Caenorhabditis elegans. Methods in Enzymology, 2004, 389, 305-320.	0.4	37
30	Activation of EGL-47, a GÂo-Coupled Receptor, Inhibits Function of Hermaphrodite-Specific Motor Neurons to Regulate Caenorhabditis elegans Egg-Laying Behavior. Journal of Neuroscience, 2004, 24, 8522-8530.	1.7	49
31	Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nature Neuroscience, 2004, 7, 1096-1103.	7.1	256
32	RGS-7 Completes a Receptor-Independent Heterotrimeric G Protein Cycle to Asymmetrically Regulate Mitotic Spindle Positioning in C. elegans. Cell, 2004, 119, 209-218.	13.5	111
33	Genetic and Cellular Basis for Acetylcholine Inhibition of <i>Caenorhabditis elegans </i> Behavior. Journal of Neuroscience, 2003, 23, 8060-8069.	1.7	121
34	An N-terminal Region of Caenorhabditis elegans RGS Proteins EGL-10 and EAT-16 Directs Inhibition of Gαo VersusGαq Signaling. Journal of Biological Chemistry, 2002, 277, 47004-47013.	1.6	37
35	Two RGS proteins that inhibit Gî \pm o and Gî \pm q signaling in C. elegans neurons require a Gî 2 5-like subunit for function. Current Biology, 2001, 11, 222-231.	1.8	86
36	Multiple RGS proteins alter neural G protein signaling to allow <i>C. elegans</i> to rapidly change behavior when fed. Genes and Development, 2000, 14, 2003-2014.	2.7	68

#	Article	IF	CITATIONS
37	A new family of G-protein regulators — the RGS proteins. Current Opinion in Cell Biology, 1997, 9, 143-147.	2.6	199
38	EGL-10 Regulates G Protein Signaling in the C. elegans Nervous System and Shares a Conserved Domain with Many Mammalian Proteins. Cell, 1996, 84, 115-125.	13.5	562