
Lisa A Spencer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2148464/publications.pdf Version: 2024-02-01

LISA A SDENCED

#	Article	IF	CITATIONS
1	Functions of tissue-resident eosinophils. Nature Reviews Immunology, 2017, 17, 746-760.	10.6	376
2	Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. Journal of Leukocyte Biology, 2009, 85, 117-123.	1.5	216
3	Eosinophils in innate immunity: an evolving story. Cell and Tissue Research, 2011, 343, 57-83.	1.5	215
4	The transcription factor XBP1 is selectively required for eosinophil differentiation. Nature Immunology, 2015, 16, 829-837.	7.0	154
5	Eosinophils and Th2 immunity: contemporary insights. Immunology and Cell Biology, 2010, 88, 250-256.	1.0	150
6	Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood, 2018, 132, 2183-2187.	0.6	125
7	Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18478-18483.	3.3	120
8	Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3333-3338.	3.3	119
9	Eosinophil Secretion of Granule-Derived Cytokines. Frontiers in Immunology, 2014, 5, 496.	2.2	105
10	Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. Journal of Leukocyte Biology, 2008, 83, 229-236.	1.5	101
11	Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation. Current Allergy and Asthma Reports, 2016, 16, 54.	2.4	91
12	Human Eosinophils Secrete Preformed, Granule-Stored Interleukin-4 Through Distinct Vesicular Compartments. Traffic, 2005, 6, 1047-1057.	1.3	87
13	CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils. Journal of Leukocyte Biology, 2016, 100, 391-401.	1.5	52
14	Charcot-Leyden Crystals in Eosinophilic Inflammation: Active Cytolysis Leads to Crystal Formation. Current Allergy and Asthma Reports, 2019, 19, 35.	2.4	50
15	CCL11 elicits secretion of RNases from mouse eosinophils and their cellâ€free granules. FASEB Journal, 2012, 26, 2084-2093.	0.2	43
16	Resident intestinal eosinophils constitutively express antigen presentation markers and include two phenotypically distinct subsets of eosinophils. Immunology, 2018, 154, 298-308.	2.0	42
17	Mature human eosinophils express functional Notch ligands mediating eosinophil autocrine regulation. Blood, 2009, 113, 3092-3101.	0.6	39
18	Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). Journal of Leukocyte Biology, 2018, 104, 69-83.	1.5	34

LISA A SPENCER

#	Article	IF	CITATIONS
19	Remote allergen exposure elicits eosinophil infiltration into allergen nonexposed mucosal organs and primes for allergic inflammation. Mucosal Immunology, 2020, 13, 777-787.	2.7	25
20	An algorithm for the classification of mRNA patterns in eosinophilic esophagitis: Integration of machine learning. Journal of Allergy and Clinical Immunology, 2018, 141, 1354-1364.e9.	1.5	22
21	Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells, 2021, 10, 426.	1.8	19
22	Single-Cell Analyses of Human Eosinophils at High Resolution to Understand Compartmentalization and Vesicular Trafficking of Interferon-Gamma. Frontiers in Immunology, 2018, 9, 1542.	2.2	15
23	Humoral Immunity Provides Resident Intestinal Eosinophils Access to Luminal Antigen via Eosinophil-Expressed Low-Affinity Fcl ³ Receptors. Journal of Immunology, 2016, 197, 3716-3724.	0.4	7
24	Modulation of surface CD11c expression tracks plasticity in murine intestinal tissue eosinophils. Journal of Leukocyte Biology, 2022, 111, 943-952.	1.5	7
25	Assessing Phenotypic Heterogeneity in Intestinal Tissue Eosinophils. Methods in Molecular Biology, 2021, 2241, 243-255.	0.4	3
26	Climbing New Mountains: How Antibodies Blocking α4β7 Integrins Tamed Eosinophilic Inflammation of the Intestinal Tract. Digestive Diseases and Sciences, 2019, 64, 2068-2071.	1.1	2
27	A Gel-Based Dual Antibody Capture and Detection Method for Assaying of Extracellular Cytokine Secretion: EliCell. , 2005, 302, 297-314.		1