
Sudhir Raghavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/214817/publications.pdf Version: 2024-02-01

SUDHIP RACHAVAN

#	Article	IF	CITATIONS
1	Regulation Monoamine Oxidases. , 2021, , 542-560.		1
2	MP-Pt(IV): A MAOB-Sensitive Mitochondrial-Specific Prodrug for Treating Glioblastoma. Molecular Cancer Therapeutics, 2020, 19, 2445-2453.	4.1	4
3	A â€Clickable―Probe for Active MGMT in Glioblastoma Demonstrates Two Discrete Populations of MGMT. Cancers, 2020, 12, 453.	3.7	7
4	The 3S Enantiomer Drives Enolase Inhibitory Activity in SF2312 and Its Analogues. Molecules, 2019, 24, 2510.	3.8	10
5	Development and validation of chemical features-based proton-coupled folate transporter/activity and reduced folate carrier/activity models (pharmacophores). Journal of Molecular Graphics and Modelling, 2018, 81, 125-133.	2.4	0
6	EXTH-72. MP-Pt(IV): A MAOB SENSITIVE MITOCHONDRIAL SMART BOMB FOR TREATING GLIOMA. Neuro-Oncology, 2018, 20, vi100-vi100.	1.2	0
7	PAM-OBC: A monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma. Oncotarget, 2018, 9, 23923-23943.	1.8	9
8	ENOblock Does Not Inhibit the Activity of the Glycolytic Enzyme Enolase. PLoS ONE, 2016, 11, e0168739.	2.5	34
9	Tumor Targeting with Novel 6-Substituted Pyrrolo [2,3- <i>d</i>) Pyrimidine Antifolates with Heteroatom Bridge Substitutions via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis. Journal of Medicinal Chemistry. 2016. 59. 7856-7876.	6.4	30
10	Novel 5-Substituted Pyrrolo[2,3-d]pyrimidines as Dual Inhibitors of Glycinamide Ribonucleotide Formyltransferase and 5-Aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase and as Potential Antitumor Agents. Journal of Medicinal Chemistry, 2015, 58, 1479-1493.	6.4	22
11	The design, synthesis and biological evaluation of conformationally restricted 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multi-targeted receptor tyrosine kinase and microtubule inhibitors as potential antitumor agents. Bioorganic and Medicinal Chemistry, 2015, 23, 2408-2423.	3.0	32
12	6-Substituted Pyrrolo[2,3- <i>d</i>]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors. Journal of Medicinal Chemistry, 2015, 58, 6938-6959.	6.4	34
13	The design and discovery of water soluble 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multitargeted receptor tyrosine kinase inhibitors and microtubule targeting antitumor agents. Bioorganic and Medicinal Chemistry, 2014, 22, 3753-3772.	3.0	38
14	Structure–Activity Profiles of Novel 6-Substituted Pyrrolo[2,3- <i>d</i>]pyrimidine Thienoyl Antifolates with Modified Amino Acids for Cellular Uptake by Folate Receptors α and β and the Proton-Coupled Folate Transporter. Journal of Medicinal Chemistry, 2014, 57, 8152-8166.	6.4	23
15	Structure–Activity Relationship and in Vitro and in Vivo Evaluation of the Potent Cytotoxic Anti-microtubule Agent <i>N</i> -(4-Methoxyphenyl)- <i>N</i> ,2,6-trimethyl-6,7-dihydro-5 <i>H</i> -cyclopenta[<i>d</i>]pyrimidin-4-aminiu Chloride and Its Analogues As Antitumor Agents, Journal of Medicinal Chemistry, 2013, 56, 6829-6844.	_6.4 m	24
16	Synthesis and biological activity of 5-chloro-N4-substituted phenyl-9H-pyrimido[4,5-b]indole-2,4-diamines as vascular endothelial growth factor receptor-2 inhibitors and antiangiogenic agents. Bioorganic and Medicinal Chemistry, 2013, 21, 1857-1864.	3.0	17
17	Synthesis of N4-(substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and identification of new microtubule disrupting compounds that are effective against multidrug resistant cells. Bioorganic and Medicinal Chemistry, 2013, 21, 891-902.	3.0	14
18	Discovery of 5-Substituted Pyrrolo[2,3- <i>d</i>) pyrimidine Antifolates as Dual-Acting Inhibitors of Glycinamide Ribonucleotide Formyltransferase and 5-Aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase in De Novo Purine Nucleotide Biosynthesis: Implications of Inhibiting 5-Aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase to AMPK Activation and Antitumor Activity. Journal of Medicinal Chemistry, 2013, 56, 10016-10032.	6.4	33

#	Article	IF	CITATIONS
19	Design, Synthesis, and Molecular Modeling of Novel Pyrido[2,3- <i>d</i>]pyrimidine Analogues As Antifolates; Application of Buchwald–Hartwig Aminations of Heterocycles. Journal of Medicinal Chemistry, 2013, 56, 4422-4441.	6.4	43
20	Tumor-Targeting with Novel Non-Benzoyl 6-Substituted Straight Chain Pyrrolo[2,3- <i>d</i>]pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and Inhibition of de Novo Purine Nucleotide Biosynthesis. Journal of Medicinal Chemistry, 2013, 56, 8684-8695.	6.4	24
21	N4-(3-Bromophenyl)-7-(substituted benzyl) pyrrolo[2,3-d]pyrimidines as potent multiple receptor tyrosine kinase inhibitors: Design, synthesis, and in vivo evaluation. Bioorganic and Medicinal Chemistry, 2012, 20, 2444-2454.	3.0	13
22	Design, synthesis and evaluation of 2-amino-4-m-bromoanilino-6-arylmethyl-7H-pyrrolo[2,3-d]pyrimidines as tyrosine kinase inhibitors and antiangiogenic agents1. Bioorganic and Medicinal Chemistry, 2010, 18, 5261-5273.	3.0	19
23	Synthesis and Discovery of Water-Soluble Microtubule Targeting Agents that Bind to the Colchicine Site on Tubulin and Circumvent Pgp Mediated Resistance. Journal of Medicinal Chemistry, 2010, 53, 8116-8128.	6.4	61
24	Single Agents with Designed Combination Chemotherapy Potential: Synthesis and Evaluation of Substituted Pyrimido[4,5- <i>b</i>]indoles as Receptor Tyrosine Kinase and Thymidylate Synthase Inhibitors and as Antitumor Agents. Journal of Medicinal Chemistry, 2010, 53, 1563-1578.	6.4	50