Lawrence A Klobutcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2148149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Remodeling in Ciliated Protozoa. Annual Review of Microbiology, 2002, 56, 489-520.	2.9	169
2	Developmental Genome Reorganization in Ciliated Protozoa: The Transposon Link. Progress in Molecular Biology and Translational Science, 1997, 56, 1-62.	1.9	162
3	Internal sequences are eliminated from genes during macronuclear development in the ciliated protozoan oxytricha nova. Cell, 1984, 36, 1045-1055.	13.5	153
4	Consensus inverted terminal repeat sequence ofParameciumlESs: resemblance to termini of Tc1 -related andEuplotesTec transposons. Nucleic Acids Research, 1995, 23, 2006-2013.	6.5	123
5	The Bacillus subtilis spore coat provides "eat resistance" during phagocytic predation by the protozoan Tetrahymena thermophila. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 165-170.	3.3	121
6	Genetic Code Supports Targeted Insertion of Two Amino Acids by One Codon. Science, 2009, 323, 259-261.	6.0	108
7	The Special Case of the Hypotrichs. , 1986, , 111-154.		70
8	Detection of circular forms of eliminated DNA during macronuclear development in E. crassus. Cell, 1989, 59, 1019-1026.	13.5	69
9	Developmentally controlled genomic rearrangements in ciliated protozoa. Current Opinion in Genetics and Development, 1991, 1, 397-403.	1.5	68
10	The Tetrahymena thermophila Phagosome Proteome. Eukaryotic Cell, 2006, 5, 1990-2000.	3.4	65
11	Differential DNA Amplification and Copy Number Control in the Hypotrichous CiliateEuplotes crassus. Journal of Protozoology, 1991, 38, 136-140.	0.9	61
12	Shifty Ciliates. Cell, 2002, 111, 763-766.	13.5	56
13	Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nature Structural and Molecular Biology, 2017, 24, 61-68.	3.6	56
14	Distinct Paths To Stop Codon Reassignment by the Variant-Code Organisms Tetrahymena and Euplotes. Molecular and Cellular Biology, 2006, 26, 438-447.	1.1	49
15	Characterization of transcription initiation, translation initiation, and poly(A) addition sites in the gene-sized macronuclear DNA molecules of Euplotes. Nucleic Acids Research, 1994, 22, 214-221.	6.5	48
16	Conserved DNA sequences adjacent to chromosome fragmentation and telomere addition sites in Euplotes crassus [published erratum appears in Nucleic Acids Res 1999 Feb 15;27(4):following 1222]. Nucleic Acids Research, 1998, 26, 4230-4240.	6.5	46
17	Internal eliminated sequenc are removed prior to chromosome fragmentation during development inEuplotes crassus. Nucleic Acids Research, 1990, 18, 845-853.	6.5	45
18	The Long and the Short of Developmental DNA Deletion in Euplotes crassus. Journal of Eukaryotic Microbiology, 1996, 43, 442-452.	0.8	40

LAWRENCE A KLOBUTCHER

#	Article	IF	CITATIONS
19	High fidelity developmental excision of Ted transposons and internal eliminated sequences inEuplotes crassus. Nucleic Acids Research, 1991, 19, 3229-3236.	6.5	39
20	Alternative use of chromosome fragmentation sites in the ciliated protozoanOxytricha nova. Nucleic Acids Research, 1988, 16, 251-264.	6.5	35
21	Vacuolar Protein Sorting Protein 13A, TtVPS13A, Localizes to the Tetrahymena thermophila Phagosome Membrane and Is Required for Efficient Phagocytosis. Eukaryotic Cell, 2011, 10, 1207-1218.	3.4	31
22	Sequencing of Random Euplotes crassus Macronuclear Genes Supports a High Frequency of +1 Translational Frameshifting. Eukaryotic Cell, 2005, 4, 2098-2105.	3.4	24
23	Characterization of In Vivo Developmental Chromosome Fragmentation Intermediates in E. crassus. Molecular Cell, 1999, 4, 695-704.	4.5	23
24	Genetic Characterization and Use of a Restriction Fragment Length Variant in the Hypotrichous CiliateEuplotes crassus1. Journal of Protozoology, 1988, 35, 459-465.	0.9	20
25	Tec3, a New Developmentally Eliminated DNA Element in Euplotes crassus. Eukaryotic Cell, 2003, 2, 103-114.	3.4	19
26	Sequence of aEuplotes crassusMacronuclear DNA Molecule Encoding a Protein with Homology to a Rat Form-I Phosphoinositide-specific Phospholipase C. Journal of Protozoology, 1991, 38, 425-427.	0.9	14
27	Micronuclear Organization of Macronuclear Genes in the Hypotrichous CiliateOxytricha nova1. Journal of Protozoology, 1987, 34, 424-428.	0.9	12
28	Conjugation-Specific Genes in the Ciliate Euplotes crassus: Gene Expression from the Old Macronucleus. Journal of Eukaryotic Microbiology, 1997, 44, 1-11.	0.8	12
29	A development-specific histone H3 localizes to the developing macronucleus ofEuplotes. Genesis, 2000, 26, 179-188.	0.8	10
30	Micronuclear and Macronuclear Sequences of a Euplotes crassus Gene Encoding a Putative Nuclear Protein Kinase. Journal of Eukaryotic Microbiology, 1996, 43, 389-392.	0.8	7
31	Evolution of Programmed Ribosomal Frameshifting in the TERT Genesof Euplotes. Journal of Molecular Evolution, 2004, 58, 701-711.	0.8	7
32	De novo telomere addition to spacer sequences prior to their developmental degradation in Euplotes crassus. Nucleic Acids Research, 2002, 30, 523-531.	6.5	6
33	Telomeric repeat sequences are not associated with Tec1 elements in euplotes crassus. European Journal of Protistology, 1995, 31, 201-207.	0.5	5
34	conZA8 Encodes an Abundant Protein Targeted to the Developing Macronucleus in Euplotes crassus. Journal of Eukaryotic Microbiology, 2000, 47, 105-115.	0.8	2
35	The Euplotes crassus Conjugation-specific conN1 Gene Encodes a Transcription Elongation Factor TFIIS-like Protein. Journal of Eukaryotic Microbiology, 2001, 48, 218-220.	0.8	2
36	Assessing the Effectiveness of Coding and Non-coding Regions in Antisense Ribosome Inhibition of Gene Expression in Tetrahymena. Journal of Eukaryotic Microbiology, 2004, 51, 536-541.	0.8	2

#	Article	IF	CITATIONS
37	A high percentage of Euplotes genes require a +1 translational frameshift for expression. Journal of Eukaryotic Microbiology, 2005, 52, 7S-27S.	0.8	0
38	One codon – two amino acids FASEB Journal, 2009, 23, 338.3.	0.2	0
39	The Euplotes crassus selenoproteome. FASEB Journal, 2009, 23, 338.2.	0.2	0