Jared Crain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2147898/publications.pdf Version: 2024-02-01

INDED CONIN

#	Article	IF	CITATIONS
1	Combining Highâ€Throughput Phenotyping and Genomic Information to Increase Prediction and Selection Accuracy in Wheat Breeding. Plant Genome, 2018, 11, 170043.	2.8	175
2	Development and Evolution of an Intermediate Wheatgrass Domestication Program. Sustainability, 2018, 10, 1499.	3.2	89
3	Development and Deployment of a Portable Field Phenotyping Platform. Crop Science, 2016, 56, 965-975.	1.8	77
4	Utilizing Highâ€Throughput Phenotypic Data for Improved Phenotypic Selection of Stressâ€Adaptive Traits in Wheat. Crop Science, 2017, 57, 648-659.	1.8	34
5	Evaluation of a Reduced Cost Active NDVI Sensor for Crop Nutrient Management. Journal of Sensors, 2012, 2012, 1-10.	1.1	31
6	Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). Theoretical and Applied Genetics, 2019, 132, 2325-2351.	3.6	30
7	Enhancing Crop Domestication Through Genomic Selection, a Case Study of Intermediate Wheatgrass. Frontiers in Plant Science, 2020, 11, 319.	3.6	28
8	Application of Geographically Weighted Regression to Improve Grain Yield Prediction from Unmanned Aerial System Imagery. Crop Science, 2017, 57, 2478-2489.	1.8	27
9	Genomic prediction enables rapid selection of highâ€performing genets in an intermediate wheatgrass breeding program. Plant Genome, 2021, 14, e20080.	2.8	21
10	Genomic Selection for Small Grain Improvement. , 2017, , 99-130.		20
11	Efficient crop model parameter estimation and site characterization using large breeding trial data sets. Agricultural Systems, 2017, 157, 170-184.	6.1	17
12	By-Plant Prediction of Corn (<i>Zea mays</i> L.) Grain Yield using Height and Stalk Diameter. Communications in Soil Science and Plant Analysis, 2015, 46, 564-575.	1.4	13
13	Sequenced-based paternity analysis to improve breeding and identify self-incompatibility loci in intermediate wheatgrass (Thinopyrum intermedium). Theoretical and Applied Genetics, 2020, 133, 3217-3233.	3.6	13
14	Development of wholeâ€genome prediction models to increase the rate of genetic gain in intermediate wheatgrass (<i>Thinopyrum intermedium</i>) breeding. Plant Genome, 2021, 14, e20089.	2.8	12
15	Nested association mapping reveals the genetic architecture of spike emergence and anthesis timing in intermediate wheatgrass. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	11
16	MAIZE GRAIN YIELD RESPONSE TO VARIABLE ROW NITROGEN FERTILIZATION. Journal of Plant Nutrition, 2013, 36, 1013-1024.	1.9	8
17	Improving Wheat Yield Prediction Using Secondary Traits and High-Density Phenotyping Under Heat-Stressed Environments. Frontiers in Plant Science, 2021, 12, 633651.	3.6	8
18	Evaluation of fieldâ€based single plant phenotyping for wheat breeding. The Plant Phenome Journal, 2022, 5, .	2.0	6

JARED CRAIN

#	Article	IF	CITATIONS
19	Genetic architecture and QTL selection response for Kernza perennial grain domestication traits. Theoretical and Applied Genetics, 2022, 135, 2769-2784.	3.6	4
20	Applied phenomics and genomics for improving barley yellow dwarf resistance in winter wheat. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	1
21	Experiences of Applying Field-Based High-Throughput Phenotyping for Wheat Breeding. Concepts and Strategies in Plant Sciences, 2021, , 71-99.	0.5	0