Alberto J. Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2147841/publications.pdf Version: 2024-02-01

ALBERTO L ALVES

#	Article	IF	CITATIONS
1	Exercise and Resistant Hypertension—Is Exercise Enough?—Reply. JAMA Cardiology, 2022, 7, 571.	3.0	2
2	The blood pressure response to acute exercise predicts the ambulatory blood pressure response to exercise training in patients with resistant hypertension: results from the EnRicH trial. Hypertension Research, 2022, 45, 1392-1397.	1.5	6
3	Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics (Switzerland), 2021, 6, 38.	0.6	53
4	Are subjective measures the answer to assess physical inactivity on a daily basis in patients with resistant hypertension?. Journal of Human Hypertension, 2021, 35, 1180-1182.	1.0	1
5	Effect of Exercise Training on Ambulatory Blood Pressure Among Patients With Resistant Hypertension. JAMA Cardiology, 2021, 6, 1317.	3.0	41
6	Physical Activity is Associated With Lower Arterial Stiffness in Patients With Resistant Hypertension. Heart Lung and Circulation, 2021, 30, 1762-1768.	0.2	7
7	Exercise training reduces arterial stiffness in adults with hypertension: a systematic review and meta-analysis. Journal of Hypertension, 2021, 39, 214-222.	0.3	60
8	Low―and moderateâ€intensity aerobic exercise acutely reduce blood pressure in adults with highâ€normal/grade I hypertension. Journal of Clinical Hypertension, 2020, 22, 1732-1736.	1.0	7
9	The Chester step test is a valid tool to assess cardiorespiratory fitness in adults with hypertension: reducing the gap between clinical practice and fitness assessments. Hypertension Research, 2019, 42, 2021-2024.	1.5	11
10	Arterial Stiffness is Associated With Moderate to Vigorous Physical Activity Levels in Post-Myocardial Infarction Patients. Journal of Cardiopulmonary Rehabilitation and Prevention, 2019, 39, 325-330.	1.2	3
11	Central and peripheral blood pressure response to a single bout of an exercise session in patients with resistant hypertension. Hypertension Research, 2019, 42, 114-116.	1.5	5
12	Arterial Stiffness is Related to Impaired Exercise Capacity in Patients With Coronary Artery Disease and History of Myocardial Infarction. Heart Lung and Circulation, 2019, 28, 1614-1621.	0.2	11
13	Exercise as a tool for hypertension and resistant hypertension management: current insights. Integrated Blood Pressure Control, 2018, Volume 11, 65-71.	0.4	26
14	Exercise-based cardiac rehabilitation increases daily physical activity of patients following myocardial infarction: subanalysis of two randomised controlled trials. Physiotherapy, 2017, 103, 59-65.	0.2	23
15	Effects of resistance exercise on endothelial progenitor cell mobilization in women. Scientific Reports, 2017, 7, 17880.	1.6	41
16	Physical activity in primary and secondary prevention of cardiovascular disease: Overview updated. World Journal of Cardiology, 2016, 8, 575.	0.5	135
17	Effect of exercise-based cardiac rehabilitation on arterial stiffness and inflammatory and endothelial dysfunction biomarkers: A randomized controlled trial of myocardial infarction patients. Atherosclerosis, 2015, 239, 150-157.	0.4	27
18	Treadmill walking with load carriage increases aortic pressure wave reflection. Revista Portuguesa De Cardiologia, 2014, 33, 425-430.	0.2	10

Alberto J. Alves

#	Article	IF	CITATIONS
19	Effect of 8-week exercise-based cardiac rehabilitation on cardiac autonomic function: A randomized controlled trial in myocardial infarction patients. American Heart Journal, 2014, 167, 753-761.e3.	1.2	29
20	Treadmill walking with load carriage increases aortic pressure wave reflection. Revista Portuguesa De Cardiologia (English Edition), 2014, 33, 425-430.	0.2	3
21	The effects of exercise training on arterial stiffness in coronary artery disease patients: a stateâ€ofâ€theâ€art review. Clinical Physiology and Functional Imaging, 2014, 34, 254-262.	0.5	25
22	Heart rate variability in myocardial infarction patients: Effects of exercise training. Revista Portuguesa De Cardiologia (English Edition), 2013, 32, 687-700.	0.2	16
23	Heart rate variability in myocardial infarction patients: Effects of exercise training. Revista Portuguesa De Cardiologia, 2013, 32, 687-700.	0.2	35
24	GNAS A-1121G Variant is Associated with Improved Diastolic Dysfunction in Response to Exercise Training in Heart Failure Patients. International Journal of Sports Medicine, 2013, 34, 274-280.	0.8	4
25	Effects of Exercise Training on Endothelial Progenitor Cells in Cardiovascular Disease. American Journal of Physical Medicine and Rehabilitation, 2013, 92, 1020-1030.	0.7	51
26	Exercise Training Increases Interleukin-10 after an Acute Myocardial Infarction: A Randomised Clinical Trial. International Journal of Sports Medicine, 2012, 33, 192-198.	0.8	38
27	Exercise Training Improves Diastolic Function in Heart Failure Patients. Medicine and Science in Sports and Exercise, 2012, 44, 776-785.	0.2	90
28	Exercise training enhances autonomic function after acute myocardial infarction: A randomized controlled study. Revista Portuguesa De Cardiologia (English Edition), 2012, 31, 135-141.	0.2	14
29	Exercise training enhances autonomic function after acute myocardial infarction: A randomized controlled study. Revista Portuguesa De Cardiologia, 2012, 31, 135-141.	0.2	30
30	The <i>AMPD1</i> C34T mutation is not associated with the status of Israeli athletes. European Journal of Sport Science, 2012, 12, 244-248.	1.4	1
31	Is there an interaction between <i>BDKRB2</i> â^³9/+9 and <i>GNB3</i> C825T polymorphisms and elite athletic performance?. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, e242-6.	1.3	20
32	Central Fat Influences Cardiac Autonomic Function in Obese and Overweight Girls. Pediatric Cardiology, 2011, 32, 924-928.	0.6	37
33	<i>PPARA</i> intron 1 A/C polymorphism and elite athlete status. European Journal of Sport Science, 2011, 11, 177-181.	1.4	2
34	Resting Measures and Physiological Responses to Exercise for the Determination of Prognosis in Patients With Chronic Heart Failure. Cardiology in Review, 2010, 18, 171-177.	0.6	6
35	Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/sprint performance?. Metabolism: Clinical and Experimental, 2010, 59, 861-865.	1.5	30
36	CK-MM Gene Polymorphism Does not Influence the Blood CK Activity Levels After Exhaustive Eccentric Exercise. International Journal of Sports Medicine, 2010, 31, 213-217.	0.8	10

Alberto J. Alves

 Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall 0.8 13⁴ inflammation?. International Journal of Cardiology, 2010, 141, 214-221. 	ITATIONS
	39
38Interaction between SNPs in the <i>NRF2</i> 38Genomics, 2010, 41, 78-81.1.027	7
 39 <i>>NRF2</i> intron 3 A/G polymorphism is associated with endurance athletes' status. Journal of 1.2 26 Applied Physiology, 2009, 107, 76-79. 	6
40 Is there an interaction between <i>PPARD</i> T294C and <i>PPARGC1A</i> Gly482Ser polymorphisms and 0.9 36 human endurance performance?. Experimental Physiology, 2009, 94, 1147-1152.	6
The Effect of Cardiac Rehabilitation With Relaxation Therapy on Psychological, Hemodynamic, and41Hospital Admission Outcome Variables. Journal of Cardiopulmonary Rehabilitation and Prevention,1.2222009, 29, 304-309.2009, 29, 304-309.	2