Raffael Schaffrath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2147750/publications.pdf

Version: 2024-02-01

159585 214800 2,492 67 30 47 citations g-index h-index papers 69 69 69 2248 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetics and Molecular Physiology of the Yeast Kluyveromyces lactis. Fungal Genetics and Biology, 2000, 30, 173-190.	2.1	159
2	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
3	Mutations in ABO1/ELO2, a Subunit of Holo-Elongator, Increase Abscisic Acid Sensitivity and Drought Tolerance in Arabidopsis thaliana. Molecular and Cellular Biology, 2006, 26, 6902-6912.	2.3	138
4	tRNAGluwobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast. Molecular Microbiology, 2006, 59, 677-688.	2.5	98
5	Elongator's toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Molecular Microbiology, 2003, 49, 1297-1307.	2.5	90
6	Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Molecular Microbiology, 2010, 76, 1082-1094.	2.5	87
7	Wobble uridine modifications–a reason to live, a reason to die?!. RNA Biology, 2017, 14, 1209-1222.	3.1	81
8	Kluyveromyces lactis zymocin mode of action is linked to RNA polymerase II function via Elongator. Molecular Microbiology, 2001, 42, 1095-1105.	2.5	73
9	Saccharomyces cerevisiae cell wall chitin, theKluyveromyces lactis zymocin receptor. Yeast, 2001, 18, 1285-1299.	1.7	71
10	RNA Repair: An Antidote to Cytotoxic Eukaryal RNA Damage. Molecular Cell, 2008, 31, 278-286.	9.7	71
11	KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Molecular Microbiology, 2002, 44, 865-875.	2.5	69
12	Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisia egene required for Kluyveromyces lactiszymocin action. Molecular Microbiology, 2002, 43, 783-791.	2.5	65
13	The diphthamide modification pathway from <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> – revisited. Molecular Microbiology, 2014, 94, 1213-1226.	2.5	58
14	The Yeast Elongator Histone Acetylase Requires Sit4-dependent Dephosphorylation for Toxin-Target Capacity. Molecular Biology of the Cell, 2004, 15, 1459-1469.	2.1	57
15	tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Molecular Microbiology, 2008, 69, 1266-1277.	2.5	56
16	tRNA anticodon loop modifications ensure protein homeostasis and cell morphogenesis in yeast. Nucleic Acids Research, 2016, 44, 10946-10959.	14.5	56
17	Loss of Anticodon Wobble Uridine Modifications Affects tRNALys Function and Protein Levels in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0119261.	2.5	52
18	The Amidation Step of Diphthamide Biosynthesis in Yeast Requires DPH6, a Gene Identified through Mining the DPH1-DPH5 Interaction Network. PLoS Genetics, 2013, 9, e1003334.	3.5	51

#	Article	IF	Citations
19	Cooperativity between different tRNA modifications and their modification pathways. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 409-418.	1.9	50
20	A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Molecular Microbiology, 2008, 69, 1221-1233.	2.5	48
21	Sit4p Protein Phosphatase Is Required for Sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis Zymocin. Genetics, 2001, 159, 1479-1489.	2.9	48
22	Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Molecular Microbiology, 2009, 73, 869-881.	2.5	47
23	Subunit Communications Crucial for the Functional Integrity of the Yeast RNA Polymerase II Elongator (\hat{l}^3 -Toxin Target (TOT)) Complex. Journal of Biological Chemistry, 2003, 278, 956-961.	3.4	42
24	Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Molecular Microbiology, 2002, 45, 817-826.	2.5	41
25	Independent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications. RNA Biology, 2017, 14, 1252-1259.	3.1	40
26	Roles of Elongator Dependent tRNA Modification Pathways in Neurodegeneration and Cancer. Genes, 2019, 10, 19.	2.4	39
27	Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling. Microbial Cell, 2014, 1, 416-424.	3.2	39
28	Phosphorylation of Elp1 by Hrr25 Is Required for Elongator-Dependent tRNA Modification in Yeast. PLoS Genetics, 2015, 11, e1004931.	3.5	38
29	Sulfur transfer and activation by ubiquitin-like modifier system Uba4•Urm1 link protein urmylation and tRNA thiolation in yeast. Microbial Cell, 2016, 3, 554-564.	3.2	35
30	Glutaredoxin GRXS17 Associates with the Cytosolic Iron-Sulfur Cluster Assembly Pathway. Plant Physiology, 2016, 172, pp.00261.2016.	4.8	35
31	Yeast αâ€tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Molecular Microbiology, 2008, 69, 175-187.	2.5	33
32	Absolute Quantification of Noncoding RNA by Microscale Thermophoresis. Angewandte Chemie - International Edition, 2019, 58, 9565-9569.	13.8	29
33	Urmylation and tRNA thiolation functions of ubiquitinâ€like Uba4·Urm1 systems are conserved from yeast to man. FEBS Letters, 2015, 589, 904-909.	2.8	25
34	An SSB encoded by and operating on linear killer plasmids fromKluyveromyces lactis. Yeast, 2001, 18, 1239-1247.	1.7	24
35	Extranuclear Inheritance: Cytoplasmic Linear Double-Stranded DNA Killer Elements of the Dairy Yeast Kluyveromyces lactis. Progress in Botany Fortschritte Der Botanik, 2001, , 51-70.	0.3	24
36	Kluyveromyces lactis killer plasmid pGKL2: Molecular analysis of an essential gene, ORF5. Yeast, 1995, 11, 615-628.	1.7	23

#	Article	IF	CITATIONS
37	Distinct Subsets of Sit4 Holophosphatases Are Required for Inhibition of (i) Saccharomyces cerevisiae (i) Growth by Rapamycin and Zymocin. Eukaryotic Cell, 2009, 8, 1637-1647.	3.4	21
38	Insights into Diphthamide, Key Diphtheria Toxin Effector. Toxins, 2013, 5, 958-968.	3.4	21
39	Loss of Elongator- and KEOPS-Dependent tRNA Modifications Leads to Severe Growth Phenotypes and Protein Aggregation in Yeast. Biomolecules, 2020, 10, 322.	4.0	20
40	A cytoplasmic geneâ€shuffle system in Kluyveromyces lactis : use of epitope tagging to detect a killer plasmidâ€encoded gene product. Molecular Microbiology, 1996, 19, 545-554.	2.5	18
41	Antagonistic Interactions and Killer Yeasts. , 2017, , 229-275.		18
42	Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biology, 2018, 15, 1-3.	3.1	18
43	Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC. Nucleic Acids Research, 2011, 39, 687-700.	14.5	17
44	Diphthamide-deficiency syndrome: a novel human developmental disorder and ribosomopathy. European Journal of Human Genetics, 2020, 28, 1497-1508.	2.8	17
45	Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. PLoS ONE, 2018, 13, e0205870.	2.5	16
46	Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator. Nucleic Acids Research, 2019, 47, 4814-4830.	14.5	15
47	Cytoplasmic gene expression in yeast A plasmid-encoded transcription system in <i>Kluyveromyces lactis</i> . Biochemical Society Transactions, 1995, 23, 128S-128S.	3.4	14
48	Use of a Yeast tRNase Killer Toxin to Diagnose Kti12 Motifs Required for tRNA Modification by Elongator. Toxins, 2017, 9, 272.	3.4	14
49	Role of Pseudouridine Formation by Deg1 for Functionality of Two Glutamine Isoacceptor tRNAs. Biomolecules, 2017, 7, 8.	4.0	13
50	Decoding the biosynthesis and function of diphthamide, an enigmatic modification of translation elongation factor 2 (EF2). Microbial Cell, 2014, 1, 203-205.	3.2	13
51	Misactivation of multiple starvation responses in yeast by loss of tRNA modifications. Nucleic Acids Research, 2020, 48, 7307-7320.	14.5	12
52	Redox requirements for ubiquitin-like urmylation of Ahp1, a 2-Cys peroxiredoxin from yeast. Redox Biology, 2020, 30, 101438.	9.0	12
53	Unfolded Protein Response Suppression in Yeast by Loss of tRNA Modifications. Genes, 2018, 9, 516.	2.4	10
54	Collaboration of tRNA modifications and elongation factor eEF1A in decoding and nonsense suppression. Scientific Reports, 2018, 8, 12749.	3.3	10

#	Article	IF	Citations
55	Comparative Analysis of the Conserved Functions of Arabidopsis DRL1 and Yeast KTI12. Molecules and Cells, 2015, 38, 243-250.	2.6	9
56	Dosage suppression of the Kluyveromyces lactiszymocin by Saccharomyces cerevisiae ISR1 and UGP1. FEMS Yeast Research, 2007, 7, 722-730.	2.3	8
57	Yeast Killer Toxins: Fundamentals and Applications. , 2018, , 87-118.		8
58	Combined tRNA modification defects impair protein homeostasis and synthesis of the yeast prion protein Rnq1. Prion, 2017, 11, 48-53.	1.8	7
59	Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Nature Communications, 2022, 13, .	12.8	6
60	Induction of protein aggregation and starvation response by tRNA modification defects. Current Genetics, 2020, 66, 1053-1057.	1.7	5
61	Eukaryotic life without tQCUG: the role of Elongator-dependent tRNA modifications in Dictyostelium discoideum. Nucleic Acids Research, 2020, 48, 7899-7913.	14.5	5
62	A novel DPH5-related diphthamide-deficiency syndrome causing embryonic lethality or profound neurodevelopmental disorder. Genetics in Medicine, 2022, 24, 1567-1582.	2.4	5
63	Protein Phosphatase Sit4 Affects Lipid Droplet Synthesis and Soraphen A Resistance Independent of Its Role in Regulating Elongator Dependent tRNA Modification. Biomolecules, 2018, 8, 49.	4.0	4
64	Cell Growth Control by tRNase Ribotoxins from Bacteria and Yeast. , 2011, , .		2
65	Identifying Interaction Partners of Yeast Protein Disulfide Isomerases Using a Small Thiol-Reactive Cross-Linker: Implications for Secretory Pathway Proteostasis. Chemical Research in Toxicology, 2022, 35, 326-336.	3.3	2
66	Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Molecular Microbiology, 2010, 77, 531-531.	2.5	1
67	Role of SSD1 in Phenotypic Variation of Saccharomyces cerevisiae Strains Lacking DEG1-Dependent Pseudouridylation. International Journal of Molecular Sciences, 2021, 22, 8753.	4.1	1