Maarten Merkx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2147682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic thread-based analytical devices for point-of-care detection of therapeutic antibody in blood. Sensors and Actuators B: Chemical, 2022, 352, 131002.	4.0	15
2	Bioluminescent RAPPID Sensors for the Single-Step Detection of Soluble Axl and Multiplex Analysis of Cell Surface Cancer Biomarkers. Analytical Chemistry, 2022, 94, 6548-6556.	3.2	6
3	The Benefit of Being Gracious. ACS Sensors, 2022, 7, 1614-1614.	4.0	Ο
4	Switchable Control of Scaffold Protein Activity via Engineered Phosphoregulated Autoinhibition. ACS Synthetic Biology, 2022, 11, 2464-2472.	1.9	3
5	iFLinkC-X: A Scalable Framework to Assemble Bespoke Genetically Encoded Co-polymeric Linkers of Variable Lengths and Amino Acid Composition. Bioconjugate Chemistry, 2022, 33, 1415-1421.	1.8	3
6	2021: A Year Starting Full of Hope. ACS Sensors, 2021, 6, 1-2.	4.0	0
7	Preface. Methods in Enzymology, 2021, 647, xiii-xv.	0.4	Ο
8	Bottom-up de novo design of functional proteins with complex structural features. Nature Chemical Biology, 2021, 17, 492-500.	3.9	65
9	Understanding and applications of Ser/Gly linkers in protein engineering. Methods in Enzymology, 2021, 647, 1-22.	0.4	8
10	Pathwayâ€Dependent Coâ€Assembly of Elastinâ€Like Polypeptides. Small, 2021, 17, e2007234.	5.2	9
11	A plug-and-play platform of ratiometric bioluminescent sensors for homogeneous immunoassays. Nature Communications, 2021, 12, 4586.	5.8	50
12	Computational Design of Sensor Proteins; It May Actually Work. ACS Sensors, 2021, 6, 2783-2784.	4.0	0
13	Bioluminescent Antibodies through Photoconjugation of Protein G–Luciferase Fusion Proteins. Bioconjugate Chemistry, 2020, 31, 656-662.	1.8	19
14	Programmable Bivalent Peptide–DNA Locks for pH-Based Control of Antibody Activity. ACS Central Science, 2020, 6, 22-31.	5.3	29
15	The Benefit of Doubting. ACS Sensors, 2020, 5, 1861-1861.	4.0	Ο
16	Modular bioengineered kinase sensorsviascaffold protein-mediated split-luciferase complementation. Chemical Science, 2020, 11, 5532-5536.	3.7	9
17	Continuous Small-Molecule Monitoring with a Digital Single-Particle Switch. ACS Sensors, 2020, 5, 1168-1176.	4.0	25

18 Happy 5th Anniversary for ACS Sensors. ACS Sensors, 2020, 5, 1-2.

4.0 0

#	Article	IF	CITATIONS
19	Engineered Living Materials Based on Adhesin-Mediated Trapping of Programmable Cells. ACS Synthetic Biology, 2020, 9, 475-485.	1.9	40
20	Remembering NJ. ACS Sensors, 2020, 5, 887-888.	4.0	0
21	Thread-Based Bioluminescent Sensor for Detecting Multiple Antibodies in a Single Drop of Whole Blood. ACS Sensors, 2020, 5, 1786-1794.	4.0	52
22	Engineering with NanoLuc: a playground for the development of bioluminescent protein switches and sensors. Biochemical Society Transactions, 2020, 48, 2643-2655.	1.6	24
23	Too Creative for Our Own Good: Reframing Sensors as Chemical Clickbait. ACS Sensors, 2019, 4, 1452-1452.	4.0	Ο
24	Optical Control of Antibody Activity by Using Photocleavable Bivalent Peptide–DNA Locks. ChemBioChem, 2019, 20, 2463-2466.	1.3	18
25	DNA-Functionalized Supramolecular Polymers: Dynamic Multicomponent Assemblies with Emergent Properties. Bioconjugate Chemistry, 2019, 30, 1905-1914.	1.8	31
26	Engineering Sensor Proteins. ACS Sensors, 2019, 4, 3089-3091.	4.0	14
27	Ratiometric Bioluminescent Sensor Proteins Based on Intramolecular Split Luciferase Complementation. ACS Sensors, 2019, 4, 20-25.	4.0	44
28	Dual-Color Bioluminescent Sensor Proteins for Therapeutic Drug Monitoring of Antitumor Antibodies. Analytical Chemistry, 2018, 90, 3592-3599.	3.2	46
29	An Exciting Year Ahead for ACS Sensors. ACS Sensors, 2018, 3, 1-2.	4.0	1
30	Controlling protein activity by dynamic recruitment on a supramolecular polymer platform. Nature Communications, 2018, 9, 65.	5.8	47
31	Rücktitelbild: Paperâ€Based Antibody Detection Devices Using Bioluminescent BRETâ€Switching Sensor Proteins (Angew. Chem. 47/2018). Angewandte Chemie, 2018, 130, 15834-15834.	1.6	Ο
32	Paperâ€Based Antibody Detection Devices Using Bioluminescent BRETâ€Switching Sensor Proteins. Angewandte Chemie, 2018, 130, 15595-15599.	1.6	17
33	Paperâ€Based Antibody Detection Devices Using Bioluminescent BRET‣witching Sensor Proteins. Angewandte Chemie - International Edition, 2018, 57, 15369-15373.	7.2	116
34	First Impact Factor for ACS Sensors – 5.711. ACS Sensors, 2018, 3, 1218-1219.	4.0	0
35	Making Intracellular Sensors Count. ACS Sensors, 2018, 3, 1056-1057.	4.0	4
36	Accelerating DNA-Based Computing on a Supramolecular Polymer. Journal of the American Chemical Society, 2018, 140, 9758-9767.	6.6	56

#	Article	IF	CITATIONS
37	Protease-Activatable Scaffold Proteins as Versatile Molecular Hubs in Synthetic Signaling Networks. ACS Synthetic Biology, 2018, 7, 2216-2225.	1.9	14
38	Affinity Maturation of a Cyclic Peptide Handle for Therapeutic Antibodies Using Deep Mutational Scanning. Journal of Biological Chemistry, 2017, 292, 1477-1489.	1.6	20
39	Antibody-controlled actuation of DNA-based molecular circuits. Nature Communications, 2017, 8, 14473.	5.8	82
40	Welcome to the First Anniversary Issue of <i>ACS Sensors</i> . ACS Sensors, 2017, 2, 1-2.	4.0	0
41	Nucleic acid detection using BRET-beacons based on bioluminescent protein–DNA hybrids. Chemical Communications, 2017, 53, 2862-2865.	2.2	30
42	Engineering BRET-Sensor Proteins. Methods in Enzymology, 2017, 589, 87-114.	0.4	14
43	Reflecting on How <i>ACS Sensors</i> Can Help Advance the Field of Sensing. ACS Sensors, 2017, 2, 455-456.	4.0	0
44	Editorial overview: Nine short stories of metals in biology. Current Opinion in Chemical Biology, 2017, 37, vi-vii.	2.8	0
45	Smallâ€Moleculeâ€Induced and Cooperative Enzyme Assembly on a 14â€3â€3 Scaffold. ChemBioChem, 2017, 18 331-335.	^{3,} 1.3	21
46	Incorporation of native antibodies and Fc-fusion proteins on DNA nanostructures via a modular conjugation strategy. Chemical Communications, 2017, 53, 7393-7396.	2.2	44
47	SensUs: Challenging the Next Generation of Sensor Scientists. ACS Sensors, 2017, 2, 613-613.	4.0	2
48	DNA-Specific Biosensors Based on Intramolecular β-Lactamase-Inhibitor Complex Formation. Methods in Molecular Biology, 2017, 1596, 179-194.	0.4	1
49	Should There Be Minimum Information Reporting Standards for Sensors?. ACS Sensors, 2017, 2, 1377-1379.	4.0	3
50	Semisynthetic Bioluminescent Sensor Proteins for Direct Detection of Antibodies and Small Molecules in Solution. ACS Sensors, 2017, 2, 1730-1736.	4.0	35
51	Hierarchical control of enzymatic actuators using DNA-based switchable memories. Nature Communications, 2017, 8, 1117.	5.8	45
52	August 2017: Two Years of Submissions. ACS Sensors, 2017, 2, 1068-1069.	4.0	0
53	Tuning the Flexibility of Glycine-Serine Linkers To Allow Rational Design of Multidomain Proteins. Biochemistry, 2017, 56, 6565-6574.	1.2	142
54	Bright Bioluminescent BRET Sensor Proteins for Measuring Intracellular Caspase Activity. ACS Sensors, 2017, 2, 729-734.	4.0	52

#	Article	IF	CITATIONS
55	A Novel Organ Culture Model to Quantify Collagen Remodeling in Tree Shrew Sclera. PLoS ONE, 2016, 11, e0166644.	1.1	12
56	Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn ²⁺ Sensor into a Light-Responsive Zn ²⁺ Binding Protein. ACS Synthetic Biology, 2016, 5, 698-709.	1.9	9
57	Supramolecular Control over Split‣uciferase Complementation. Angewandte Chemie, 2016, 128, 9045-9049.	1.6	26
58	Dual Readout BRET/FRET Sensors for Measuring Intracellular Zinc. ACS Chemical Biology, 2016, 11, 2854-2864.	1.6	53
59	Supramolecular Control over Split‣uciferase Complementation. Angewandte Chemie - International Edition, 2016, 55, 8899-8903.	7.2	58
60	Real Time Monitoring of Intracellular Bile Acid Dynamics Using a Genetically Encoded FRET-based Bile Acid Sensor. Journal of Visualized Experiments, 2016, , .	0.2	6
61	An Optical Sensor Based on a Photonic Polymer Film to Detect Calcium in Serum. Advanced Functional Materials, 2016, 26, 1154-1160.	7.8	115
62	Simple Method for Proper Analysis of FRET Sensor Titration Data and Intracellular Imaging Experiments Based on Isosbestic Points. ACS Sensors, 2016, 1, 498-502.	4.0	17
63	Detection of Antibodies in Blood Plasma Using Bioluminescent Sensor Proteins and a Smartphone. Analytical Chemistry, 2016, 88, 4525-4532.	3.2	121
64	Monitoring cytosolic and ER Zn ²⁺ in stimulated breast cancer cells using genetically encoded FRET sensors. Metallomics, 2016, 8, 211-217.	1.0	26
65	Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation. International Journal of Molecular Sciences, 2015, 16, 12631-12647.	1.8	4
66	Antibody Activation using DNAâ€Based Logic Gates. Angewandte Chemie - International Edition, 2015, 54, 2530-2533.	7.2	73
67	Antibody Activation using DNAâ€Based Logic Gates. Angewandte Chemie, 2015, 127, 2560-2563.	1.6	23
68	eZinCh-2: A Versatile, Genetically Encoded FRET Sensor for Cytosolic and Intraorganelle Zn ²⁺ Imaging. ACS Chemical Biology, 2015, 10, 2126-2134.	1.6	82
69	Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nature Chemistry, 2015, 7, 968-979.	6.6	205
70	Genetically-encoded FRET-based sensors for monitoring Zn ²⁺ in living cells. Metallomics, 2015, 7, 258-266.	1.0	87
71	DNA-Directed Control of Enzyme–Inhibitor Complex Formation: AÂModular Approach to Reversibly Switch Enzyme Activity. ACS Synthetic Biology, 2015, 4, 547-553.	1.9	33
72	Engineering Genetically Encoded FRET Sensors. Sensors, 2014, 14, 11691-11713.	2.1	79

#	Article	IF	CITATIONS
73	Dynamic imaging of cytosolic zinc in <i><scp>A</scp>rabidopsis</i> roots combining <scp>FRET</scp> sensors and RootChip technology. New Phytologist, 2014, 202, 198-208.	3.5	69
74	Quantifying Stickiness: Thermodynamic Characterization of Intramolecular Domain Interactions To Guide the Design of Förster Resonance Energy Transfer Sensors. Biochemistry, 2014, 53, 6370-6381.	1.2	15
75	Mitochondrial and ER-Targeted eCALWY Probes Reveal High Levels of Free Zn ²⁺ . ACS Chemical Biology, 2014, 9, 2111-2120.	1.6	102
76	Colorful Protein-Based Fluorescent Probes for Collagen Imaging. PLoS ONE, 2014, 9, e114983.	1.1	86
77	Robust Red FRET Sensors Using Self-Associating Fluorescent Domains. ACS Chemical Biology, 2013, 8, 2133-2139.	1.6	54
78	No washing, less waiting: engineering biomolecular reporters for single-step antibody detection in solution. Organic and Biomolecular Chemistry, 2013, 11, 7642.	1.5	30
79	Reversible blocking of antibodies using bivalent peptide–DNA conjugates allows protease-activatable targeting. Chemical Science, 2013, 4, 1442.	3.7	55
80	Tuning the metal binding site specificity of a fluorescent sensor protein: from copper to zinc and back. Dalton Transactions, 2013, 42, 3230-3232.	1.6	23
81	Switchable Reporter Enzymes Based on Mutually Exclusive Domain Interactions Allow Antibody Detection Directly in Solution. ACS Chemical Biology, 2013, 8, 2127-2132.	1.6	49
82	Rational design of FRET sensor proteins based on mutually exclusive domain interactions. Biochemical Society Transactions, 2013, 41, 1201-1205.	1.6	30
83	Supramolecular Control of Enzyme Activity through Cucurbit[8]urilâ€Mediated Dimerization. Angewandte Chemie - International Edition, 2013, 52, 2915-2919.	7.2	113
84	Monitoring bile acid transport in single living cells using a genetically encoded Förster resonance energy transfer sensor. Hepatology, 2013, 57, 740-752.	3.6	43
85	MagFRET: The First Genetically Encoded Fluorescent Mg2+ Sensor. PLoS ONE, 2013, 8, e82009.	1.1	60
86	Calculation of transition dipole moment in fluorescent proteins—towards efficient energy transfer. Physical Chemistry Chemical Physics, 2012, 14, 4109.	1.3	60
87	Colorful Calcium Sensors. ChemBioChem, 2012, 13, 349-351.	1.3	13
88	Reengineering of a fluorescent zinc sensor protein yields the first genetically encoded cadmium probe. Chemical Communications, 2011, 47, 11879.	2.2	32
89	The binding of CNA35 contrast agents to collagen fibrils. Chemical Communications, 2011, 47, 1503-1505.	2.2	24
90	Choline dendrimers as generic scaffolds for the non-covalent synthesis of multivalent protein assemblies. Chemical Communications, 2011, 47, 5997.	2.2	10

#	Article	IF	CITATIONS
91	Semi-synthesis of a protease-activatable collagen targeting probe. Chemical Communications, 2011, 47, 7998.	2.2	8
92	In Vivo Characterization of a New Abdominal Aortic Aneurysm Mouse Model With Conventional and Molecular Magnetic Resonance Imaging. Journal of the American College of Cardiology, 2011, 58, 2522-2530.	1.2	74
93	Dendrimer Display of Tumor-Homing Peptides. Bioconjugate Chemistry, 2011, 22, 397-405.	1.8	31
94	From Phage Display to Dendrimer Display: Insights into Multivalent Binding. Journal of the American Chemical Society, 2011, 133, 6636-6641.	6.6	37
95	Chemoselective Protein and Peptide Immobilization on Biosensor Surfaces. Methods in Molecular Biology, 2011, 751, 401-420.	0.4	5
96	Collagen targeting using multivalent protein-functionalized dendrimers. Bioorganic and Medicinal Chemistry, 2011, 19, 1062-1071.	1.4	12
97	Engineering Protein Switches: Sensors, Regulators, and Spare Parts for Biology and Biotechnology. ChemBioChem, 2011, 12, 353-361.	1.3	41
98	A Versatile, Modular Platform for Multivalent Peptide Ligands Based on a Dendritic Wedge. European Journal of Organic Chemistry, 2010, 2010, 111-119.	1.2	14
99	Antibody Detection by Using a FRETâ€Based Protein Conformational Switch. ChemBioChem, 2010, 11, 2264-2267.	1.3	52
100	Proteaseâ€Activatable Collagen Targeting Based on Protein Cyclization. ChemBioChem, 2010, 11, 1665-1668.	1.3	7
101	Fluorescent imaging of transition metal homeostasis using genetically encoded sensors. Current Opinion in Chemical Biology, 2010, 14, 231-237.	2.8	61
102	Exchange Kinetics of Protein-Functionalized Micelles and Liposomes Studied by Förster Resonance Energy Transfer. Bioconjugate Chemistry, 2010, 21, 860-866.	1.8	25
103	Macrocyclization of enzyme-based supramolecular polymers. Chemical Science, 2010, 1, 79.	3.7	68
104	Noncovalent Synthesis of Protein Dendrimers. Chemistry - A European Journal, 2009, 15, 8760-8767.	1.7	19
105	Efficient and Chemoselective Surface Immobilization of Proteins by Using Anilineâ€Catalyzed Oxime Chemistry. ChemBioChem, 2009, 10, 658-662.	1.3	48
106	Multivalent Choline Dendrimers as Potent Inhibitors of Pneumococcal Cellâ€Wall Hydrolysis. Angewandte Chemie - International Edition, 2009, 48, 948-951.	7.2	25
107	Efficient, chemoselective synthesis of immunomicelles using single-domain antibodies with a C-terminal thioester. BMC Biotechnology, 2009, 9, 66.	1.7	22
108	Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nature Methods, 2009, 6, 737-740.	9.0	395

#	Article	IF	CITATIONS
109	High-Affinity Peptide-Based Collagen Targeting Using Synthetic Phage Mimics: From Phage Display to Dendrimer Display. Journal of the American Chemical Society, 2009, 131, 11683-11685.	6.6	71
110	Collagen Targeting Using Protein-Functionalized Micelles: The Strength of Multiple Weak Interactions. Journal of the American Chemical Society, 2009, 131, 7304-7312.	6.6	42
111	One-step refolding and purification of disulfide-containing proteins with a C-terminal MESNA thioester. BMC Biotechnology, 2008, 8, 76.	1.7	17
112	Mapping preferred sites for fluorescent labeling by combining fluorescence and MS analysis of tryptic CNA35 protein digests. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 863, 293-297.	1.2	5
113	His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor. Protein Engineering, Design and Selection, 2008, 21, 529-536.	1.0	47
114	Two-photon microscopy on vital carotid arteries: imaging the relationship between collagen and inflammatory cells in atherosclerotic plaques. Journal of Biomedical Optics, 2008, 13, 044022.	1.4	34
115	High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe. Journal of Structural Biology, 2007, 159, 392-399.	1.3	89
116	Ratiometric Detection of Zn(II) Using Chelating Fluorescent Protein Chimeras. Journal of Molecular Biology, 2007, 374, 411-425.	2.0	70
117	Reorganization of Immobilized Horse and Yeast CytochromecInduced by pH Changes or Nitric Oxide Binding. Langmuir, 2007, 23, 3832-3839.	1.6	21
118	Electron Transfer and Ligand Binding to Cytochromec† Immobilized on Self-Assembled Monolayers. Langmuir, 2007, 23, 729-736.	1.6	34
119	Proteinâ^'Liposome Conjugates Using Cysteine-Lipids And Native Chemical Ligation. Bioconjugate Chemistry, 2007, 18, 590-596.	1.8	77
120	Imaging Collagen in Intact Viable Healthy and Atherosclerotic Arteries Using Fluorescently Labeled CNA35 and Two-Photon Laser Scanning Microscopy. Molecular Imaging, 2007, 6, 7290.2007.00021.	0.7	65
121	Enhanced Sensitivity of FRET-Based Protease Sensors by Redesign of the GFP Dimerization Interface. ChemBioChem, 2007, 8, 1119-1121.	1.3	82
122	Branched KLVFF Tetramers Strongly Potentiate Inhibition of βâ€Amyloid Aggregation. ChemBioChem, 2007, 8, 1857-1864.	1.3	128
123	Site‧pecific Protein and Peptide Immobilization on a Biosensor Surface by Pulsed Native Chemical Ligation. ChemBioChem, 2007, 8, 1790-1794.	1.3	40
124	Variation of Linker Length in Ratiometric Fluorescent Sensor Proteins Allows Rational Tuning of Zn(II) Affinity in the Picomolar to Femtomolar Range. Journal of the American Chemical Society, 2007, 129, 3494-3495.	6.6	102
125	Ligand-induced monomerization of Allochromatium vinosum cytochrome c′ studied using native mass spectrometry and fluorescence resonance energy transfer. Journal of Biological Inorganic Chemistry, 2007, 12, 919-928.	1.1	7
126	Imaging collagen in intact viable healthy and atherosclerotic arteries using fluorescently labeled CNA35 and two-photon laser scanning microscopy. Molecular Imaging, 2007, 6, 247-60.	0.7	25

#	Article	IF	CITATIONS
127	Quantitative Understanding of the Energy Transfer between Fluorescent Proteins Connected via Flexible Peptide Linkers. Biochemistry, 2006, 45, 13183-13192.	1.2	177
128	Ratiometric Fluorescent Sensor Proteins with Subnanomolar Affinity for Zn(II) Based on Copper Chaperone Domains. Journal of the American Chemical Society, 2006, 128, 10754-10762.	6.6	111
129	Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Analytical Biochemistry, 2006, 350, 177-185.	1.1	143
130	Additional evidence for heme release in myoglobin-DDAB films on pyrolitic graphite. Electrochemistry Communications, 2006, 8, 999-1004.	2.3	28
131	Multivalent Peptide and Protein Dendrimers Using Native Chemical Ligation. Angewandte Chemie - International Edition, 2005, 44, 5052-5057.	7.2	90
132	Heme Release in Myoglobinâ^'DDAB Films and Its Role in Electrochemical NO Reduction. Journal of the American Chemical Society, 2005, 127, 16224-16232.	6.6	58
133	Successful recombinant production of Allochromatium vinosum cytochrome c′ requires coexpression of cmm genes in heme-rich Escherichia coli JCB712. Biochemical and Biophysical Research Communications, 2005, 327, 668-674.	1.0	9
134	Electrochemical Reduction of NO by Hemin Adsorbed at Pyrolitic Graphite. Journal of the American Chemical Society, 2005, 127, 7579-7586.	6.6	103
135	Determination by X-ray Absorption Spectroscopy of the Feâ^Fe Separation in the Oxidized Form of the Hydroxylase of Methane Monooxygenase Alone and in the Presence of MMOD. Inorganic Chemistry, 2004, 43, 4579-4589.	1.9	22
136	Copper-dependent protein–protein interactions studied by yeast two-hybrid analysis. Biochemical and Biophysical Research Communications, 2004, 323, 789-795.	1.0	49
137	Why OrfY?. Journal of Biological Chemistry, 2002, 277, 5858-5865.	1.6	66
138	Oxygen Kinetic Isotope Effects in Soluble Methane Monooxygenase. Journal of Biological Chemistry, 2001, 276, 4549-4553.	1.6	38
139	Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins A list of abbreviations can be found in Section 7 Angewandte Chemie - International Edition, 2001, 40, 2782-2807.	7.2	85
140	Probing the Role of the Trivalent Metal in Phosphate Ester Hydrolysis:Â Preparation and Characterization of Purple Acid Phosphatases Containing AllIIZnlland InIIIZnIIActive Sites, Including the First Example of an Active Aluminum Enzyme. Journal of the American Chemical Society, 1999, 121, 6683-6689.	6.6	56
141	Difference Fourier Transform Infrared Evidence for Ester Bonds Linking the Heme Group in Myeloperoxidase, Lactoperoxidase, and Eosinophil Peroxidase. Journal of the American Chemical Society, 1997, 119, 11542-11543.	6.6	52
142	Histidine Tagging Both Allows Convenient Single-step Purification of Bovine Rhodopsin and Exerts Ionic Strength-dependent Effects on Its Photochemistry. Journal of Biological Chemistry, 1995, 270, 11222-11229.	1.6	51
143	Ratiometric Bioluminescent Zinc Sensor Proteins to Quantify Serum and Intracellular Free Zn ²⁺ . ACS Chemical Biology, 0, , .	1.6	12