
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2147642/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Design of an Ice Recrystallization-Inhibiting Polyampholyte-Containing Graft Polymer for Inhibition of<br>Protein Aggregation. Biomacromolecules, 2022, 23, 487-496.                                     | 5.4  | 15        |
| 2  | Elucidating the degradation mechanism of a self-degradable dextran-based medical adhesive.<br>Carbohydrate Polymers, 2022, 278, 118949.                                                                  | 10.2 | 11        |
| 3  | Quick and Mild Isolation of Intact Lysosomes Using Magnetic–Plasmonic Hybrid Nanoparticles. ACS<br>Nano, 2022, 16, 885-896.                                                                              | 14.6 | 13        |
| 4  | Cellular Flocculation Using Concentrated Polymer Brush-Modified Cellulose Nanofibers with<br>Different Fiber Lengths. Biomacromolecules, 2022, , .                                                       | 5.4  | 1         |
| 5  | Development and structural analysis of dual-thermo-responsive self-assembled zwitterionic micelles.<br>Materials Advances, 2022, 3, 4252-4261.                                                           | 5.4  | 2         |
| 6  | Facile Photolithographic Fabrication of Zwitterionic Polymer Microneedles with Protein Aggregation<br>Inhibition for Transdermal Drug Delivery. Biomacromolecules, 2022, 23, 365-376.                    | 5.4  | 13        |
| 7  | Enhanced proliferation and differentiation of human mesenchymal stem cells in the<br>gravityâ€controlled environment. Artificial Organs, 2022, , .                                                       | 1.9  | 4         |
| 8  | Polyethylene-glycol-modified zwitterionic polymer assisted protein aggregation arrest and refolding.<br>Molecular Systems Design and Engineering, 2022, 7, 1327-1335.                                    | 3.4  | 3         |
| 9  | Review of the current state of protein aggregation inhibition from a materials chemistry perspective: special focus on polymeric materials. Materials Advances, 2021, 2, 1139-1176.                      | 5.4  | 83        |
| 10 | Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR.<br>Communications Materials, 2021, 2, .                                                                    | 6.9  | 48        |
| 11 | Small-volume vitrification and rapid warming yield high survivals of one-cell rat embryos in cryotubes. Biology of Reproduction, 2021, 105, 258-266.                                                     | 2.7  | 4         |
| 12 | Oxidized Polysaccharides as Green and Sustainable Biomaterials. Current Organic Chemistry, 2021, 25, 1483-1496.                                                                                          | 1.6  | 12        |
| 13 | Effect of different carboxylated poly l-lysine and dimethyl sulfoxide combinations on post thaw rabbit sperm functionality and fertility. Cryobiology, 2021, 102, 127-132.                               | 0.7  | 8         |
| 14 | Avengers against cancer: A new era of nano-biomaterial-based therapeutics. Materials Today, 2021, 51, 317-349.                                                                                           | 14.2 | 24        |
| 15 | Gene expression analysis of human induced pluripotent stem cells cryopreserved by vitrification using StemCell Keep. Biochemistry and Biophysics Reports, 2021, 28, 101172.                              | 1.3  | 3         |
| 16 | Carboxylated Îμ-poly-L-lysine, a cryoprotective agent, is an effective partner of ethylene glycol for the<br>vitrification of embryos at various preimplantation stages. Cryobiology, 2020, 97, 245-249. | 0.7  | 4         |
| 17 | Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell<br>Constructs without Using Liquid Nitrogen. Biomacromolecules, 2020, 21, 3017-3025.                 | 5.4  | 23        |
| 18 | Controlling the degradation of cellulose scaffolds with Malaprade oxidation for tissue engineering.<br>Journal of Materials Chemistry B, 2020, 8, 7904-7913.                                             | 5.8  | 21        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Design of Stimuli-Responsive Polyampholytes and Their Transformation into Micro-Hydrogels for<br>Drug Delivery. ACS Symposium Series, 2020, , 47-62.                                                                   | 0.5  | 2         |
| 20 | Development of an efficient vitrification method for chondrocyte sheets for clinical application.<br>Regenerative Therapy, 2020, 14, 215-221.                                                                          | 3.0  | 14        |
| 21 | Novel anti-biofouling and drug releasing materials for contact lenses. Colloids and Surfaces B:<br>Biointerfaces, 2020, 189, 110859.                                                                                   | 5.0  | 7         |
| 22 | Hydrophobic Polyampholytes and Nonfreezing Cold Temperature Stimulate Internalization of Au<br>Nanoparticles to Zwitterionic Liposomes. Langmuir, 2019, 35, 1740-1748.                                                 | 3.5  | 2         |
| 23 | pH-Responsive Polyion Complex Vesicle with Polyphosphobetaine Shells. Langmuir, 2019, 35, 1249-1256.                                                                                                                   | 3.5  | 15        |
| 24 | Comparative Study of Protein Aggregation Arrest by Zwitterionic Polysulfobetaines: Using<br>Contrasting Raft Agents. ACS Omega, 2019, 4, 12186-12193.                                                                  | 3.5  | 15        |
| 25 | Dual Thermo- and pH-Responsive Behavior of Double Zwitterionic Graft Copolymers for Suppression of Protein Aggregation and Protein Release. ACS Applied Materials & Interfaces, 2019, 11, 39459-39469.                 | 8.0  | 33        |
| 26 | Effect of dualâ€drugâ€releasing micelle–hydrogel composite on wound healing <i>in vivo</i> in<br>fullâ€thickness excision wound rat model. Journal of Biomedical Materials Research - Part A, 2019, 107,<br>1094-1106. | 4.0  | 19        |
| 27 | Cytosolic delivery of quantum dots mediated by freezing and hydrophobic polyampholytes in RAW 264.7 cells. Journal of Materials Chemistry B, 2019, 7, 7387-7395.                                                       | 5.8  | 4         |
| 28 | Amino-Carrageenan@Polydopamine Microcomposites as Initiators for the Degradation of Hydrogel by near-Infrared Irradiation for Controlled Drug Release. ACS Applied Polymer Materials, 2019, 1, 286-297.                | 4.4  | 14        |
| 29 | Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydrate Polymers, 2019, 204, 131-141.                                                                 | 10.2 | 52        |
| 30 | Enhanced Adsorption of a Protein–Nanocarrier Complex onto Cell Membranes through a High Freeze<br>Concentration by a Polyampholyte Cryoprotectant. Langmuir, 2018, 34, 2352-2362.                                      | 3.5  | 9         |
| 31 | Zwitterionic Polymer Design that Inhibits Aggregation and Facilitates Insulin Refolding: Mechanistic<br>Insights and Importance of Hydrophobicity. Macromolecular Bioscience, 2018, 18, e1800016.                      | 4.1  | 18        |
| 32 | Comparative analysis of the cellular entry of polystyrene and gold nanoparticles using the freeze concentration method. Biomaterials Science, 2018, 6, 1791-1799.                                                      | 5.4  | 3         |
| 33 | Development and Characterization of a Poly (Vinyl Alcohol)/Graphene Oxide Composite Hydrogel as<br>An Artificial Cartilage Material. Applied Sciences (Switzerland), 2018, 8, 2272.                                    | 2.5  | 17        |
| 34 | Micropatterned Cell Orientation of Cyanobacterial Liquid-Crystalline Hydrogels. ACS Applied<br>Materials & Interfaces, 2018, 10, 44834-44843.                                                                          | 8.0  | 8         |
| 35 | Development and Application of Cryoprotectants. Advances in Experimental Medicine and Biology, 2018, 1081, 339-354.                                                                                                    | 1.6  | 27        |
| 36 | Surface-Selective Control of Cell Orientation on Cyanobacterial Liquid Crystalline Gels. ACS Omega, 2018, 3, 6554-6559.                                                                                                | 3.5  | 7         |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Switchable release nano-reservoirs for co-delivery of drugs via a facile micelle–hydrogel composite.<br>Journal of Materials Chemistry B, 2017, 5, 3488-3497.                                                                 | 5.8 | 27        |
| 38 | Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels. Scientific Reports, 2017, 7, 45777.                                                                                                      | 3.3 | 38        |
| 39 | A Freezeâ€Concentration and Polyampholyteâ€Modified Liposomeâ€Based Antigenâ€Delivery System for<br>Effective Immunotherapy. Advanced Healthcare Materials, 2017, 6, 1700207.                                                 | 7.6 | 9         |
| 40 | Facile preparation of transparent poly(vinyl alcohol) hydrogels with uniform microcrystalline structure by hot-pressing without using organic solvents. Polymer Journal, 2017, 49, 535-542.                                   | 2.7 | 27        |
| 41 | Tunable Dualâ€Thermoresponsive Core–Shell Nanogels Exhibiting UCST and LCST Behavior.<br>Macromolecular Rapid Communications, 2017, 38, 1700478.                                                                              | 3.9 | 38        |
| 42 | StemCell Keepâ,,¢ is Effective for Cryopreservation of Human Embryonic Stem Cells by Vitrification. Cell Transplantation, 2017, 26, 773-787.                                                                                  | 2.5 | 15        |
| 43 | Magnetic Separation of Autophagosomes from Mammalian Cells Using Magnetic–Plasmonic Hybrid<br>Nanobeads. ACS Omega, 2017, 2, 4929-4937.                                                                                       | 3.5 | 6         |
| 44 | Freezing-Assisted Gene Delivery Combined with Polyampholyte Nanocarriers. ACS Biomaterials Science and Engineering, 2017, 3, 1677-1689.                                                                                       | 5.2 | 6         |
| 45 | Tunable phaseâ€separation behavior of thermoresponsive polyampholytes through molecular design.<br>Journal of Polymer Science Part A, 2017, 55, 876-884.                                                                      | 2.3 | 17        |
| 46 | Successful vitrification of pronuclear-stage pig embryos with a novel cryoprotective agent,<br>carboxylated ε-poly-L-lysine. PLoS ONE, 2017, 12, e0176711.                                                                    | 2.5 | 24        |
| 47 | Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration. Nanoscale, 2016, 8, 15888-15901.                                                             | 5.6 | 33        |
| 48 | Dextran oxidized by a malaprade reaction shows main chain scission through a maillard reaction<br>triggered by schiff base formation between aldehydes and amines. Journal of Polymer Science Part A,<br>2016, 54, 2254-2260. | 2.3 | 19        |
| 49 | Cryopreservation of a Two-Dimensional Monolayer Using a Slow Vitrification Method with<br>Polyampholyte to Inhibit Ice Crystal Formation. ACS Biomaterials Science and Engineering, 2016, 2,<br>1023-1029.                    | 5.2 | 47        |
| 50 | Toward a Molecular Understanding of the Mechanism of Cryopreservation by Polyampholytes: Cell<br>Membrane Interactions and Hydrophobicity. Biomacromolecules, 2016, 17, 1882-1893.                                            | 5.4 | 109       |
| 51 | Thixotropic injectable hydrogel using a polyampholyte and nanosilicate prepared directly after cryopreservation. Materials Science and Engineering C, 2016, 69, 1273-1281.                                                    | 7.3 | 16        |
| 52 | Polyampholyte―and nanosilicateâ€based soft bionanocomposites with tailorable mechanical and cell<br>adhesion properties. Journal of Biomedical Materials Research - Part A, 2016, 104, 1379-1386.                             | 4.0 | 13        |
| 53 | Medical Application of Polyampholytes. , 2016, , 165-182.                                                                                                                                                                     |     | 4         |
| 54 | Ag/FeCo/Ag Core/Shell/Shell Magnetic Nanoparticles with Plasmonic Imaging Capability. Langmuir, 2015, 31, 2228-2236.                                                                                                          | 3.5 | 31        |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A zwitterionic polymer as a novel inhibitor of protein aggregation. Journal of Materials Chemistry B, 2015, 3, 5683-5689.                                                                                                                                   | 5.8  | 43        |
| 56 | Phase Separation of Carboxylated Poly-L-lysine. Materials Research Society Symposia Proceedings, 2014, 1622, 129-133.                                                                                                                                       | 0.1  | 0         |
| 57 | Degradation control of cellulose scaffold by Malaprade oxidation. Materials Research Society<br>Symposia Proceedings, 2014, 1621, 191-196.                                                                                                                  | 0.1  | 0         |
| 58 | Hydrogel formation from the concentrated aqueous solution of polyvinyl alcohol. Materials<br>Research Society Symposia Proceedings, 2014, 1622, 37-40.                                                                                                      | 0.1  | 1         |
| 59 | Freezing Assisted Protein Delivery by Using Polymeric Cryoprotectant. Materials Research Society<br>Symposia Proceedings, 2014, 1622, 123-127.                                                                                                              | 0.1  | 0         |
| 60 | Low cytotoxic tissue adhesive based on oxidized dextran and epsilonâ€polyâ€ <scp>l</scp> â€lysine. Journal of Biomedical Materials Research - Part A, 2014, 102, 2511-2520.                                                                                 | 4.0  | 69        |
| 61 | The effect of a novel cryoprotective agent, carboxylated ε-poly-l-lysine, on the developmental ability of<br>re-vitrified mouse embryos at the pronuclear stage. Cryobiology, 2014, 68, 200-204.                                                            | 0.7  | 17        |
| 62 | Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry.<br>Biomaterials Science, 2014, 2, 308-317.                                                                                                                | 5.4  | 47        |
| 63 | Antifreeze Effect of Carboxylated ε-Poly- <scp>l</scp> -lysine on the Growth Kinetics of Ice Crystals.<br>Journal of Physical Chemistry B, 2014, 118, 10240-10249.                                                                                          | 2.6  | 51        |
| 64 | Biobased Polyimides from 4-Aminocinnamic Acid Photodimer. Macromolecules, 2014, 47, 1586-1593.                                                                                                                                                              | 4.8  | 91        |
| 65 | Self-degradation of tissue adhesive based on oxidized dextran and poly-l-lysine. Carbohydrate Polymers, 2014, 113, 32-38.                                                                                                                                   | 10.2 | 52        |
| 66 | Protein cytoplasmic delivery using polyampholyte nanoparticles and freeze concentration.<br>Biomaterials, 2014, 35, 6508-6518.                                                                                                                              | 11.4 | 31        |
| 67 | Hypothermicpreservation of Mouse Induced Pluripotent Stem Cells by Polyampholytes. Current Nanoscience, 2014, 10, 222-226.                                                                                                                                  | 1.2  | 2         |
| 68 | Development of a novel vitrification method for chondrocyte sheets. BMC Biotechnology, 2013, 13, 58.                                                                                                                                                        | 3.3  | 40        |
| 69 | Cryoprotective properties of completely synthetic polyampholytes via reversible<br>addition-fragmentation chain transfer (RAFT) polymerization and the effects of hydrophobicity.<br>Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1767-1780. | 3.5  | 58        |
| 70 | Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine<br>without the addition of proteins or dimethyl sulfoxide. Journal of Biomaterials Science, Polymer<br>Edition, 2013, 24, 1484-1497.                            | 3.5  | 67        |
| 71 | Dextran Based Polyampholyte Having Cryoprotective Properties. Materials Research Society Symposia<br>Proceedings, 2013, 1498, 33-38.                                                                                                                        | 0.1  | 1         |
| 72 | Synthetic Polyampholytes Based Cryoprotective Agents by Reversible Addition Fragmentation Chain<br>Transfer Polymerisation. Materials Research Society Symposia Proceedings, 2013, 1499, 1.                                                                 | 0.1  | 1         |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Efficient Production of Live Offspring from Mouse Oocytes Vitrified with a Novel Cryoprotective<br>Agent, Carboxylated ε-poly-L-lysine. PLoS ONE, 2013, 8, e83613.                                                                        | 2.5  | 30        |
| 74 | Attenuation of Murine Graft-Versus-Host Disease by a Tea Polyphenol. Cell Transplantation, 2012, 21, 909-918.                                                                                                                             | 2.5  | 5         |
| 75 | Cell encapsulation and cryostorage in PVA-gelatin cryogels: incorporation of carboxylated<br>ε-poly-L-lysine as cryoprotectant. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6,<br>280-290.                             | 2.7  | 27        |
| 76 | Development of Artificial Intra-articular Polyethylene Glycol (PEG) Lubricant for Survival of Total<br>Knee Joint Patient (Preliminary Study for Clinical Application). , 2011, , .                                                       |      | 0         |
| 77 | Effective vitrification of human induced pluripotent stem cells using carboxylated ε-poly-l-lysine.<br>Cryobiology, 2011, 63, 76-83.                                                                                                      | 0.7  | 56        |
| 78 | Epigallocatechin-3-gallate protects kidneys from ischemia reperfusion injury by HO-1 upregulation and inhibition of macrophage infiltration. Transplant International, 2011, 24, 514-522.                                                 | 1.6  | 44        |
| 79 | Oral pretreatment with a green tea polyphenol for cardioprotection against ischemia–reperfusion<br>injury in an isolated rat heart model. Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 511-517.                             | 0.8  | 39        |
| 80 | Control of proliferation and differentiation of osteoblasts on apatiteâ€coated poly(vinyl alcohol)<br>hydrogel as an artificial articular cartilage material. Journal of Biomedical Materials Research - Part<br>A, 2010, 92A, 1225-1232. | 4.0  | 21        |
| 81 | Polyampholytes as Cryoprotective Agents for Mammalian Cell Cryopreservation. Cell Transplantation, 2010, 19, 691-699.                                                                                                                     | 2.5  | 80        |
| 82 | Application of the bactericidal activity of εâ€polyâ€ <scp>l</scp> â€lysine to the storage of human platelet<br>concentrates. Transfusion, 2010, 50, 932-940.                                                                             | 1.6  | 12        |
| 83 | Effects of Epigallocatechin Gallate on Osteogenic Capability of Human Mesenchymal Stem Cells After<br>Suspension in Phosphate-Buffered Saline. Tissue Engineering - Part A, 2010, 16, 91-100.                                             | 3.1  | 5         |
| 84 | Nonfrozen Preservation of Articular Cartilage by Epigallocatechin-3-Gallate Reversibly Regulating<br>Cell Cycle and NF-κB Expression. Tissue Engineering - Part A, 2010, 16, 595-603.                                                     | 3.1  | 11        |
| 85 | Preservation of Platelets by Adding Epigallocatechin-3- <i>O</i> -Gallate to Platelet Concentrates. Cell<br>Transplantation, 2009, 18, 521-528.                                                                                           | 2.5  | 13        |
| 86 | Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties.<br>Biomaterials, 2009, 30, 4842-4849.                                                                                                     | 11.4 | 186       |
| 87 | Reversible Regulation of Cell Cycle-Related Genes by Epigallocatechin Gallate for Hibernation of Neonatal Human Tarsal Fibroblasts. Cell Transplantation, 2009, 18, 459-469.                                                              | 2.5  | 17        |
| 88 | Beneficial Storage Effects of Epigallocatechin-3-O-Gallate on the Articular Cartilage of Rabbit<br>Osteochondral Allografts. Cell Transplantation, 2009, 18, 505-512.                                                                     | 2.5  | 18        |
| 89 | Long-Term Preservation of Rat Skin Tissue by Epigallocatechin-3- <i>O</i> -Gallate. Cell Transplantation, 2009, 18, 513-520.                                                                                                              | 2.5  | 8         |
| 90 | The behavior of vascular smooth muscle cells and platelets onto epigallocatechin gallate-releasing<br>poly(l-lactide-co-Îμ-caprolactone) as stent-coating materials. Biomaterials, 2008, 29, 884-893.                                     | 11.4 | 66        |

| #   | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Time-dependent intracellular trafficking of FITC-conjugated epigallocatechin-3-O-gallate in L-929 cells.<br>Bioorganic and Medicinal Chemistry, 2008, 16, 9652-9659.                                                                                             | 3.0  | 47        |
| 92  | Enhanced antitumor activities of (â^')-epigallocatechin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo. Biochemical and Biophysical Research Communications, 2008, 377, 1118-1122.                                                            | 2.1  | 36        |
| 93  | Vascular Smooth Muscle Cell Behaviors onto Epigallocatechin- 3-O-Gallate-Blended<br>L-Lactide∫ε-Caprolactone Copolymers. Key Engineering Materials, 2007, 342-343, 189-192.                                                                                      | 0.4  | 0         |
| 94  | Degradation Control of Collagen by Epigallocatechin-3-O-Gallate. Key Engineering Materials, 2007, 342-343, 781-784.                                                                                                                                              | 0.4  | 1         |
| 95  | Tea Polyphenol Inhibits Allostimulation in Mixed Lymphocyte Culture. Cell Transplantation, 2007, 16, 75-83.                                                                                                                                                      | 2.5  | 30        |
| 96  | Hibernation, reversible cell growth inhibition by epigallocatechin-3-O-gallate. Journal of<br>Biotechnology, 2007, 127, 758-764.                                                                                                                                 | 3.8  | 14        |
| 97  | Effects on gingival cells of hydroxyapatite immobilized on poly(ethylene-co-vinyl alcohol). Journal of<br>Biomedical Materials Research - Part A, 2007, 82A, 288-295.                                                                                            | 4.0  | 11        |
| 98  | Imparting cell adhesion to poly(vinyl alcohol) hydrogel by coating with hydroxyapatite thin film.<br>Materials Letters, 2007, 61, 2667-2670.                                                                                                                     | 2.6  | 31        |
| 99  | Attachment of artificial cartilage to underlying bone. Journal of Biomedical Materials Research Part<br>B, 2004, 68B, 59-68.                                                                                                                                     | 3.1  | 33        |
| 100 | Surface modification of poly(ethylene-co-vinyl alcohol): hydroxyapatite immobilization and control of periodontal ligament cells differentiation. Biomaterials, 2004, 25, 4817-4824.                                                                             | 11.4 | 33        |
| 101 | Adhesion between poly(ethylene-co-vinyl alcohol) (EVA) and titanium. Journal of Biomedical Materials<br>Research Part B, 2002, 60, 309-315.                                                                                                                      | 3.1  | 13        |
| 102 | Morphologic study and syntheses of type I collagen and fibronectin of human periodontal ligament<br>cells cultured on poly(ethylene-co-vinyl alcohol) (EVA) with collagen immobilization. Journal of<br>Biomedical Materials Research Part B, 2001, 54, 241-246. | 3.1  | 19        |
| 103 | Surface modification of poly(ethylene-co-vinyl alcohol) (EVA). Part I. Introduction of carboxyl groups and immobilization of collagen. Journal of Biomedical Materials Research Part B, 2000, 50, 512-517.                                                       | 3.1  | 28        |
| 104 | Type I atelocollagen grafting onto ozone-treated polyurethane films: Cell attachment, proliferation, and collagen synthesis. Journal of Biomedical Materials Research Part B, 2000, 52, 669-677.                                                                 | 3.1  | 49        |
| 105 | Type I atelocollagen grafting onto ozoneâ€treated polyurethane films: Cell attachment, proliferation,<br>and collagen synthesis. Journal of Biomedical Materials Research Part B, 2000, 52, 669-677.                                                             | 3.1  | 1         |
| 106 | Scanning Electron Microscopy and Atomic Force Microscopy Observations of Surface Morphology<br>for Articular Cartilages of Dog's Knee and Poly(vinyl alcohol) Hydrogels Kobunshi Ronbunshu, 1998,<br>55, 786-790.                                                | 0.2  | 3         |
| 107 | Cell-adhesive gels made of sacran/collagen complexes. Polymer Journal, 0, , .                                                                                                                                                                                    | 2.7  | 2         |