Yong Sook Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2147287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo therapeutic genome editing via CRISPR/Cas9 magnetoplexes for myocardial infarction. Biomaterials, 2022, 281, 121327.	11.4	10
2	High-Performance Implantable Bioelectrodes with Immunocompatible Topography for Modulation of Macrophage Responses. ACS Nano, 2022, 16, 7471-7485.	14.6	13
3	The adipokine Retnla deficiency increases responsiveness to cardiac repair through adiponectin-rich bone marrow cells. Cell Death and Disease, 2021, 12, 307.	6.3	3
4	Acute Immune Response in Venoarterial and Venovenous Extracorporeal Membrane Oxygenation Models of Rats. ASAIO Journal, 2021, 67, 546-553.	1.6	10
5	Comprehensive evaluation of differentially expressed non-coding RNAs identified during macrophage activation. Molecular Immunology, 2020, 128, 98-105.	2.2	2
6	Viability of Mesenchymal Stem Cells in an Ex Vivo Circulation System. ASAIO Journal, 2020, 66, 433-440.	1.6	5
7	Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death and Disease, 2019, 10, 835.	6.3	203
8	Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials, 2019, 225, 119513.	11.4	110
9	ENOblock inhibits the pathology of diet-induced obesity. Scientific Reports, 2019, 9, 493.	3.3	9
10	Studies on the effects of microencapsulated human mesenchymal stem cells in RGD-modified alginate on cardiomyocytes under oxidative stress conditions using in vitro biomimetic co-culture system. International Journal of Biological Macromolecules, 2019, 123, 512-520.	7.5	32
11	Antiinflammatory activity of ANGPTL4 facilitates macrophage polarization to induce cardiac repair. JCI Insight, 2019, 4, .	5.0	46
12	Novel porcine model of acute myocardial infarction using polyethylene terephthalate. Journal of Biomedical Translational Research, 2019, 20, 44-52.	0.1	1
13	Benefits of SGLT2 Inhibitor: Preventing Heart Failure and Beyond. Korean Circulation Journal, 2019, 49, 1196.	1.9	2
14	Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS Nano, 2018, 12, 1959-1977.	14.6	184
15	Adjuvant role of macrophages in stem cell-induced cardiac repair in rats. Experimental and Molecular Medicine, 2018, 50, 1-10.	7.7	17
16	A novel system-level approach using RNA-sequencing data identifies miR-30-5p and miR-142a-5p as key regulators of apoptosis in myocardial infarction. Scientific Reports, 2018, 8, 14638.	3.3	16
17	PP2A negatively regulates the hypertrophic response by dephosphorylating HDAC2 S394 in the heart. Experimental and Molecular Medicine, 2018, 50, 1-14.	7.7	22
18	Functional Relevance of Macrophage-mediated Inflammation to Cardiac Regeneration. Chonnam Medical Journal, 2018, 54, 10.	0.9	5

YONG SOOK KIM

#	Article	IF	CITATIONS
19	The micro <scp>RNA </scp> <i>miRâ€124</i> inhibits vascular smooth muscle cell proliferation by targeting S100 calciumâ€binding protein A4 (S100A4). FEBS Letters, 2017, 591, 1041-1052.	2.8	40
20	Intramyocardial Injection of Stem Cells in Pig Myocardial Infarction Model: The First Trial in Korea. Journal of Korean Medical Science, 2017, 32, 1708.	2.5	11
21	Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress. PLoS ONE, 2017, 12, e0176071.	2.5	66
22	The optimization of cell therapy by combinational application with apicidin-treated mesenchymal stem cells after myocardial infarction. Oncotarget, 2017, 8, 44281-44294.	1.8	15
23	Priming mobilized peripheral blood mononuclear cells with the "activated platelet supernatant― enhances the efficacy of cell therapy for myocardial infarction of rats. Cardiovascular Therapeutics, 2016, 34, 245-253.	2.5	3
24	Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment. Scientific Reports, 2016, 6, 30726.	3.3	34
25	5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect. Scientific Reports, 2015, 5, 15768.	3.3	37
26	The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor. Cellular Signalling, 2015, 27, 1056-1065.	3.6	51
27	Involvement of miR-34c in high glucose-insulted mesenchymal stem cells leads to inefficient therapeutic effect on myocardial infarction. Cellular Signalling, 2015, 27, 2241-2251.	3.6	25
28	Graphene Potentiates the Myocardial Repair Efficacy of Mesenchymal Stem Cells by Stimulating the Expression of Angiogenic Growth Factors and Gap Junction Protein. Advanced Functional Materials, 2015, 25, 2590-2600.	14.9	114
29	Genistein Promotes Endothelial Colony-Forming Cell (ECFC) Bioactivities and Cardiac Regeneration in Myocardial Infarction. PLoS ONE, 2014, 9, e96155.	2.5	40
30	Angiopoietin-Like 4 Is Involved in the Poor Angiogenic Potential of High Glucose-Insulted Bone Marrow Stem Cells. Korean Circulation Journal, 2014, 44, 177.	1.9	12
31	Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental and Molecular Medicine, 2014, 46, e70-e70.	7.7	395
32	Protective role of 5â€azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis. Journal of Cellular and Molecular Medicine, 2014, 18, 1018-1027.	3.6	46
33	Regulation of MMP/TIMP by HUVEC transplantation attenuates ventricular remodeling in response to myocardial infarction. Life Sciences, 2014, 101, 15-26.	4.3	15
34	Effect of polymer-free TiO2 stent coated with abciximab or alpha lipoic acid in porcine coronary restenosis model. Journal of Cardiology, 2014, 64, 409-418.	1.9	21
35	Restoration of angiogenic capacity of diabetes-insulted mesenchymal stem cells by oxytocin. BMC Cell Biology, 2013, 14, 38.	3.0	37
36	Priming of Mesenchymal Stem Cells with Oxytocin Enhances the Cardiac Repair in Ischemia/Reperfusion Injury. Cells Tissues Organs, 2012, 195, 428-442.	2.3	69

YONG SOOK KIM

#	Article	IF	CITATIONS
37	Curcumin reduces the cardiac ischemia–reperfusion injury: involvement of the toll-like receptor 2 in cardiomyocytes. Journal of Nutritional Biochemistry, 2012, 23, 1514-1523.	4.2	57
38	A Long Road for Stem Cells to Cure Sick Hearts: Update on Recent Clinical Trials. Korean Circulation Journal, 2012, 42, 71.	1.9	7
39	Nitrogen-doped TiO2 films as drug-binding matrices for the preparation of drug-eluting stents. Journal of Materials Chemistry, 2011, 21, 8169.	6.7	14
40	SPION Nanoparticles as an Efficient Probe and Carrier of DNA to Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Journal of Nanoscience and Nanotechnology, 2011, 11, 1507-1510.	0.9	10
41	Promigratory Activity of Oxytocin on Umbilical Cord Bloodâ€Derived Mesenchymal Stem Cells. Artificial Organs, 2010, 34, 453-461.	1.9	29
42	BAY 11-7082, a Nuclear FactorKAPPA.B Inhibitor, Reduces Inflammation and Apoptosis in a Rat Cardiac Ischemia-Reperfusion Injury Model. International Heart Journal, 2010, 51, 348-353.	1.0	77
43	Preparation of a drug-eluting stent using a TiO2 film deposited by plasma enhanced chemical vapour deposition as a drug-combining matrix. Journal of Materials Chemistry, 2010, 20, 4792.	6.7	29
44	The Protective Effect of Curcumin on Myocardial Ischemia-Reperfusion Injury. Korean Circulation Journal, 2008, 38, 353.	1.9	10
45	Rosuvastatin Suppresses the Inflammatory Responses Through Inhibition of c-Jun N-terminal Kinase and Nuclear Factor-l®B in Endothelial Cells. Journal of Cardiovascular Pharmacology, 2007, 49, 376-383.	1.9	72
46	Curcumin Attenuates Inflammatory Responses of TNF-α-Stimulated Human Endothelial Cells. Journal of Cardiovascular Pharmacology, 2007, 50, 41-49.	1.9	128
47	The Role of Nuclear Factor Kappa B Activation in Atherosclerosis and Ischemic Cardiac Injury. Korean Circulation Journal, 2006, 36, 245.	1.9	5
48	Curcumin Attenuates Nuclear Factor-κB, c-Jun N-Terminal Kinase and p38 in Tumor Necrosis Factor-α-Stimulated Endothelial Cells. Korean Circulation Journal, 2006, 36, 482.	1.9	8
49	The Effects of Mesenchymal Stem Cells Transduced with Akt in a Porcine Myocardial Infarction Model. Korean Circulation Journal, 2005, 35, 734.	1.9	5
50	Carvedilol Inhibits Expressions of Vascular Cell Adhesion Molecule-1, Intercellular Adhesion Molecule-1, Monocyte Chemoattractant-1, and Interleukin-8 via NF-kappaB Inhibition in Human Endothelial Cells. Korean Circulation Journal, 2005, 35, 576.	1.9	3