Nicole Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2146989/publications.pdf

Version: 2024-02-01

82

all docs

81 3,107 30 papers citations h-index

citations h-index g-index

82 82 3953
docs citations times ranked citing authors

53

#	Article	IF	CITATIONS
1	Calmodulin Is Essential for Cardiac I KS Channel Gating and Assembly. Circulation Research, 2006, 98, 1055-1063.	4.5	182
2	Cardiac Potassium Channel Subtypes: New Roles in Repolarization and Arrhythmia. Physiological Reviews, 2014, 94, 609-653.	28.8	181
3	In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of β-Adrenergic Receptor Signaling. Science Signaling, 2013, 6, rs11.	3.6	164
4	A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO Journal, 2000, 19, 332-340.	7.8	141
5	High Prevalence of Long QT Syndrome–Associated <i>SCN5A</i> Variants in Patients With Early-Onset Lone Atrial Fibrillation. Circulation: Cardiovascular Genetics, 2012, 5, 450-459.	5.1	129
6	Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. European Heart Journal, 2013, 34, 1517-1525.	2.2	119
7	Mutations in sodium channel \hat{l}^2 -subunit SCN3B are associated with early-onset lone atrial fibrillation. Cardiovascular Research, 2011, 89, 786-793.	3 . 8	112
8	A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovascular Research, 2013, 98, 488-495.	3.8	104
9	Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. Journal of Cell Science, 2007, 120, 953-963.	2.0	103
10	KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm, 2007, 4, 1532-1541.	0.7	103
11	KCNQ1 Channels Sense Small Changes in Cell Volume. Journal of Physiology, 2003, 549, 419-427.	2.9	83
12	The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels. Neuropharmacology, 2006, 51, 1068-1077.	4.1	80
13	Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation. BMC Medical Genetics, 2012, 13, 24.	2.1	79
14	KCNE3 Mutation V17M Identified in a Patient with Lone Atrial Fibrillation. Cellular Physiology and Biochemistry, 2008, 21, 047-054.	1.6	78
15	Contribution of K ν 7 Channels to Basal Coronary Flow and Active Response to Ischemia. Hypertension, 2013, 62, 1090-1097.	2.7	74
16	Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac I _{Ks} channel. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5714-5719.	7.1	72
17	Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. Journal of Molecular and Cellular Cardiology, 2014, 67, 69-76.	1.9	66
18	Phosphorylation of connexin43 on serine 306 regulates electrical coupling. Heart Rhythm, 2009, 6, 1632-1638.	0.7	54

#	Article	IF	CITATIONS
19	Very early-onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation. Heart Rhythm, 2014, 11, 246-251.	0.7	54
20	Spinal dorsal horn astrocytes release GABA in response to synaptic activation. Journal of Physiology, 2018, 596, 4983-4994.	2.9	47
21	A Novel Nonsense Variant in Nav1.5 Cofactor MOG1 Eliminates Its Sodium Current Increasing Effect and May Increase the Risk of Arrhythmias. Canadian Journal of Cardiology, 2011, 27, 523.e17-523.e23.	1.7	45
22	Dysfunction of the Heteromeric KV7.3/KV7.5 Potassium Channel is Associated with Autism Spectrum Disorders. Frontiers in Genetics, 2013, 4, 54.	2.3	45
23	Trafficking of Kv2.1 Channels to the Axon Initial Segment by a Novel Nonconventional Secretory Pathway. Journal of Neuroscience, 2017, 37, 11523-11536.	3.6	44
24	Effect of the I _{to} activator NS5806 on cloned K _v 4 channels depends on the accessory protein KChIP2. British Journal of Pharmacology, 2010, 160, 2028-2044.	5 . 4	41
25	Characterization and Mechanisms of Action of Novel Na _V 1.5 Channel Mutations Associated With Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 177-184.	4.8	39
26	Local Anesthetic Interaction with Human Ether-a-go-go–related Gene (HERG) Channels. Anesthesiology, 2005, 103, 102-112.	2.5	36
27	Specific Sorting and Post-Golgi Trafficking of Dendritic Potassium Channels in Living Neurons. Journal of Biological Chemistry, 2014, 289, 10566-10581.	3.4	36
28	Characterizations of a loss-of-function mutation in the Kir3.4 channel subunit. Biochemical and Biophysical Research Communications, 2007, 364, 889-895.	2.1	35
29	The novel C-terminal KCNQ1 mutation M520R alters protein trafficking. Biochemical and Biophysical Research Communications, 2007, 358, 304-310.	2.1	33
30	Modulation of ERG Channels by XE991. Basic and Clinical Pharmacology and Toxicology, 2007, 100, 316-322.	2.5	32
31	Novel Kv7.1-Phosphatidylinositol 4,5-Bisphosphate Interaction Sites Uncovered by Charge Neutralization Scanning. Journal of Biological Chemistry, 2014, 289, 22749-22758.	3.4	32
32	In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis. PLoS Computational Biology, 2017, 13, e1005587.	3.2	32
33	Functional assessment of compound mutations in the KCNQ1 and KCNH2 genes associated with long QT syndrome. Heart Rhythm, 2005, 2, 1238-1249.	0.7	30
34	Long QT 1 Mutation KCNQ1A344VIncreases Local Anesthetic Sensitivity of the Slowly Activating Delayed Rectifier Potassium Current. Anesthesiology, 2006, 105, 511-520.	2.5	28
35	I _{Ks} Gain―and Lossâ€ofâ€Function in Earlyâ€Onset Lone Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2015, 26, 715-723.	1.7	28
36	The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. Journal of Molecular and Cellular Cardiology, 2016, 97, 24-35.	1.9	28

3

#	Article	IF	CITATIONS
37	Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients. Biochemical and Biophysical Research Communications, 2007, 354, 776-782.	2.1	26
38	Deletion in mice of Xâ€linked, Brugada syndrome–and atrial fibrillation–associated <i>Kcne5</i> augments ventricular K _v currents and predisposes to ventricular arrhythmia. FASEB Journal, 2019, 33, 2537-2552.	0.5	26
39	Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation. Biomarkers in Medicine, 2014, 8, 557-570.	1.4	25
40	Investigations of the Na _v \hat{l}^2 1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada syndrome mutant. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1204-H1212.	3.2	25
41	The anticonvulsant retigabine suppresses neuronal KV2-mediated currents. Scientific Reports, 2016, 6, 35080.	3.3	25
42	Gliadin Fragments and a Specific Gliadin 33-mer Peptide Close KATP Channels and Induce Insulin Secretion in INS-1E Cells and Rat Islets of Langerhans. PLoS ONE, 2013, 8, e66474.	2.5	25
43	Differential Effects of ICA-27243 on Cloned K _V 7 Channels. Pharmacology, 2010, 86, 174-181.	2.2	24
44	The Acrylamide (S)-2 As a Positive and Negative Modulator of Kv7 Channels Expressed in Xenopus laevis Oocytes. PLoS ONE, 2009, 4, e8251.	2.5	22
45	Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels. Scientific Reports, 2015, 5, 12813.	3.3	22
46	KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 764-773.	4.1	21
47	Structural basis for KV7.1–KCNEx interactions in the IKs channel complex. Heart Rhythm, 2010, 7, 708-713.	0.7	19
48	pH-dependent inhibition of K2P3.1 prolongs atrial refractoriness in whole hearts. Pflugers Archiv European Journal of Physiology, 2016, 468, 643-654.	2.8	19
49	Polyunsaturated fatty acids are potent openers of human Mâ€channels expressed in <i>Xenopus laevis</i> oocytes. Acta Physiologica, 2016, 218, 28-37.	3.8	16
50	Functional properties of human neuronal Kv 11 channels. Pflugers Archiv European Journal of Physiology, 2009, 458, 689-700.	2.8	15
51	High incidence of functional ion-channel abnormalities in a consecutive Long QT cohort with novel missense genetic variants of unknown significance. Scientific Reports, 2015, 5, 10009.	3.3	15
52	Investigating gene-microRNA networks in atrial fibrillation patients with mitral valve regurgitation. PLoS ONE, 2020, 15, e0232719.	2.5	14
53	Analysis of the Antitumor Activity of Clotrimazole on A375 Human Melanoma Cells. Anticancer Research, 2015, 35, 3781-6.	1.1	14
54	Trafficking of the <scp>I_{Ks}</scp> â€Complex in <scp>MDCK</scp> Cells: Site ofÂSubunit Assembly and Determinants ofÂPolarized Localization. Traffic, 2013, 14, 399-411.	2.7	13

#	Article	IF	CITATIONS
55	Brugada syndrome risk loci seem protective against atrial fibrillation. European Journal of Human Genetics, 2014, 22, 1357-1361.	2.8	13
56	Overlapping LQT1 and LQT2 phenotype in a patient with long QT syndrome associated with loss-of-function variations in KCNQ1 and KCNH2. Canadian Journal of Physiology and Pharmacology, 2010, 88, 1181-1190.	1.4	12
57	Deep sequencing of atrial fibrillation patients with mitral valve regurgitation shows no evidence of mosaicism but reveals novel rare germline variants. Heart Rhythm, 2017, 14, 1531-1538.	0.7	12
58	From Pan-Reactive KV7 Channel Opener to Subtype Selective Opener/Inhibitor by Addition of a Methyl Group. PLoS ONE, 2014, 9, e100209.	2.5	11
59	A Novel Loss-of-Function Variant in the Chloride Ion Channel Gene Clcn2 Associates with Atrial Fibrillation. Scientific Reports, 2020, 10, 1453.	3.3	10
60	Genetic Modifier of the QTc Interval Associated With Early-Onset Atrial Fibrillation. Canadian Journal of Cardiology, 2013, 29, 1234-1240.	1.7	9
61	Fast detection of extrasynaptic GABA with a whole-cell sniffer. Frontiers in Cellular Neuroscience, 2014, 8, 133.	3.7	9
62	Homozygosity for <i>SCN4A</i> Arg1142Gln causes congenital myopathy with variable disease expression. Neurology: Genetics, 2018, 4, e267.	1.9	9
63	Reappraisal of variants previously linked with sudden infant death syndrome: results from three population-based cohorts. European Journal of Human Genetics, 2019, 27, 1427-1435.	2.8	9
64	Protein kinase A stimulates Kv7.1 surface expression by regulating Nedd4-2-dependent endocytic trafficking. American Journal of Physiology - Cell Physiology, 2015, 309, C693-C706.	4.6	8
65	A benzodiazepine activator locks Kv7.1 channels open by electro-mechanical uncoupling. Communications Biology, 2022, 5, 301.	4.4	7
66	Multiple arrhythmic syndromes in a newborn, owing to a novel mutation in <i>SCN5A</i> . Canadian Journal of Physiology and Pharmacology, 2011, 89, 723-736.	1.4	6
67	<scp>SUMO</scp> coâ€expression modifies <scp>K_V</scp> 11.1 channel activity. Acta Physiologica, 2018, 222, e12974.	3.8	6
68	A Common Structural Component for $i_{\ell}^{1/2}$ -Subunit Mediated Modulation of Slow Inactivation in Different KVChannels. Cellular Physiology and Biochemistry, 2013, 31, 968-980.	1.6	4
69	Structural interplay of KV7.1 and KCNE1 is essential for normal repolarization and is compromised in short QT syndrome 2 (KV7.1-A287T). HeartRhythm Case Reports, 2016, 2, 521-529.	0.4	4
70	Multiple genetic variations in sodium channel subunits in a case of sudden infant death syndrome. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 620-626.	1.2	4
71	Functional consequences of genetic variation in sodium channel modifiers in early onset lone atrial fibrillation. Personalized Medicine, 2018, 15, 93-102.	1.5	4
72	Functional phenotype variations of two novel K $<$ sub $>$ V $<$ /sub $>$ 7.1 mutations identified in patients with Long QT syndrome. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 210-216.	1.2	4

#	Article	IF	CITATIONS
73	Letter by Olesen et al Regarding Article, "MOG1: A New Susceptibility Gene for Brugada Syndrome― Circulation: Cardiovascular Genetics, 2011, 4, e22; author reply e23.	5.1	3
74	Iron Overload Leading to Torsades de Pointes in \hat{l}^2 -Thalassemia and Long QT Syndrome. Cardiac Electrophysiology Clinics, 2016, 8, 247-256.	1.7	3
75	PKD Phosphorylation as Novel Pathway of KV11.1 Regulation. Cellular Physiology and Biochemistry, 2018, 47, 1742-1750.	1.6	2
76	Mutation in Nav1.5 Associated with Brugada Syndrome - a Mutational Hotspot?. Biophysical Journal, 2010, 98, 311a.	0.5	1
77	The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons. ACS Chemical Biology, 2021, 16, 1654-1662.	3.4	1
78	Whole-Exome Sequencing Implicates Neuronal Calcium Channel with Familial Atrial Fibrillation. Frontiers in Genetics, 2022, 13, 806429.	2.3	1
79	Polyunsaturated Fatty acids as Kv7 Channel Modulators. Biophysical Journal, 2013, 104, 268a.	0.5	0
80	KCNE1 Modulates the Sensitivity of Kv7.1 to Polyunsaturated Fatty Acids. Biophysical Journal, 2014, 106, 143a.	0.5	0
81	KCNQ Channels are Sensors of Cell Volume. , 2004, , 389-390.		O