Juergen Gutowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2146739/publications.pdf

Version: 2024-02-01

713013 623188 83 547 14 21 citations g-index h-index papers 84 84 84 785 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A simple electrical-circuit analogous phenomenological COVID-19 model valid for all observed pandemic phases. AIP Advances, 2022, 12 , .	0.6	2
2	Detection of Hydrogen Dissolved in Liquid Media: A Review and Outlook. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	O
3	Relationship between the <i>V</i> _{OC} Tuning Effect and the Interface Activation Energy Due to the Third Component Concentration in Ternary Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 4288-4295.	2.5	2
4	Excitons Bound to Defect States in Two-Dimensional (2D) MoS2. IEEE Nanotechnology Magazine, 2021, 20, 400-403.	1.1	O
5	Controlled Laser-Thinning of MoS ₂ Nanolayers and Transformation to Amorphous MoO _{<i>x</i>} for 2D Monolayer Fabrication. ACS Applied Nano Materials, 2020, 3, 7490-7498.	2.4	14
6	Numerical simulation of a bilayer organic solar cell based on boron chromophore compounds as acceptors. , 2020, , .		O
7	Understanding the open circuit voltage in organic solar cells on the basis of a donor-acceptor abrupt (p-n++) heterojunction. Solar Energy, 2019, 184, 610-619.	2.9	16
8	Optical Properties and Carrier Dynamics in Inorganic and Hybrid Inorganic/Organic ZnO―and GaNâ€Based Nanowire Structures. Physica Status Solidi (B): Basic Research, 2019, 256, 1800463.	0.7	5
9	Electrical characteristics of ternary solar cells based on PTB7:PCBM:ICBA. , 2019, , .		O
10	Comparison of two synthesis processes via low-cost chemical bath techniques for CuO films on ITO. , 2019, , .		1
11	Organoboron donor-ï€-acceptor chromophores for small-molecule organic solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 16410-16415.	1.1	5
12	The influence of the quantum onfined Stark effect on InGaN/AlGaN quantum dots (Phys. Status Solidi) Tj ETQ	q0,0,0 rg[BT /Overlock 1
13	Tunable Bragg polaritons and nonlinear emission from a hybrid metal-unfolded ZnSe-based microcavity. Scientific Reports, 2017, 7, 767.	1.6	3
14	The influence of the quantumâ€confined Stark effect on InGaN/AlGaN quantum dots. Physica Status Solidi (B): Basic Research, 2017, 254, 1600325.	0.7	O
15	Effects of FeCl3as oxidizing agent on the conduction mechanisms in polypyrrole (PPy)/pc–ZnO hybrid heterojunctions grown by oxidative chemical vapor deposition. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1537-1544.	2.4	17
16	Structural and optical characterization of hybrid ZnO/polymer coreâ€shell nanowires fabricated by oxidative chemical vapour deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 614-617.	0.8	4
17	Analytical energy-barrier-dependent <i>Voc</i> model for amorphous silicon solar cells. Applied Physics Letters, 2016, 109, .	1.5	5
18	Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons. Scientific Reports, 2016, 6, 34392.	1.6	27

#	Article	IF	CITATIONS
19	Tamm plasmon polaritons in the visible spectral region and its optical properties in ZnSe-based microcavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 498-502.	0.8	1
20	Luminescence dynamics of hybrid ZnO nanowire/CdSe quantum dot structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 606-609.	0.8	3
21	Electron Tunneling from Colloidal CdSe Quantum Dots to ZnO Nanowires Studied by Time-Resolved Luminescence and Photoconductivity Experiments. Journal of Physical Chemistry C, 2015, 119, 15627-15635.	1.5	16
22	Fabrication of ZnSeâ€based microcavities for lasing in the strong coupling regime and polariton confinement. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1267-1272.	0.8	0
23	The impact of the discreteness of low-fluence ion beam processing on the spatial architecture of GaN nanostructures fabricated by surface charge lithography. Surface Engineering and Applied Electrochemistry, 2013, 49, 1-3.	0.3	3
24	The impact of nanoperforation on persistent photoconductivity and optical quenching effects in suspended GaN nanomembranes. Applied Physics Letters, 2013, 103, 243113.	1.5	3
25	Blue lasing and strong coupling in ZnSe monolithic microcavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1230-1233.	0.8	1
26	Blue monolithic II-VI-based vertical-cavity surface-emitting laser. Applied Physics Letters, 2012, 100, 121102.	1.5	6
27	Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances. Applied Physics Letters, 2011, 98, 131111.	1.5	43
28	Optical Properties of InGaN Quantum Dots in Monolithic Pillar Microcavities. , 2011, , .		0
29	Properties of monolithic InGaN quantum dot pillar microcavities. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1573-1575.	0.8	0
30	Cleaning and growth morphology of GaN and InGaN surfaces. Physica Status Solidi (B): Basic Research, 2011, 248, 1800-1809.	0.7	13
31	Optical properties of single InGaN quantum dots and their devices. Physica Status Solidi (B): Basic Research, 2011, 248, 1777-1786.	0.7	8
32	Microphotoluminescence studies on GaNâ€based airpost pillar microcavities containing InGaN quantum wells and quantum dots. Physica Status Solidi (B): Basic Research, 2011, 248, 1756-1764.	0.7	2
33	Catalyst free selfâ€organized grown highâ€quality GaN nanorods. Physica Status Solidi (B): Basic Research, 2011, 248, 1787-1799.	0.7	4
34	Optical properties of wideâ€bandgap monolithic pillar microcavities with different geometries. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1246-1249.	0.8	1
35	Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing. Journal of Applied Physics, 2011, 109, 043504-043504-5.	1.1	26
36	Electroluminescence from isolated single indium gallium nitride quantum dots up to 150 K. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1428-1430.	0.8	1

#	Article	IF	Citations
37	Methods to spectrally tune II–VIâ€based monolithic microcavities. Physica Status Solidi (B): Basic Research, 2010, 247, 1539-1542.	0.7	0
38	Influence of doping on optical properties of catalyst- and mask-free grown gallium nitride nanorods. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2240-2242.	0.8	3
39	Optical properties of InGaN quantum dots in monolithic pillar microcavities. Applied Physics Letters, 2010, 96, 251906.	1.5	9
40	Nonlinear optics with ZnO nanowires. Physica Status Solidi (B): Basic Research, 2009, 246, 311-314.	0.7	31
41	Surface excitonic recombination dynamics in ZnO nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 560-563.	0.8	1
42	Emission properties of ZnSe-based pillar microcavities at elevated temperatures. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 508-511.	0.8	2
43	Influence of piezoelectric fields on excitonic complexes in InGaN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 872-875.	0.8	3
44	Optical properties of GaN nanorods grown catalystâ€free on râ€plane sapphire. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S578.	0.8	5
45	Optical properties and modal gain of InGaN quantum dot stacks. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S590-S593.	0.8	5
46	Localized versus delocalized states: Photoluminescence from electrochemically synthesized ZnO nanowires. Journal of Applied Physics, 2009, 106, 054304.	1.1	33
47	Integration of InGaN quantum dots into nitrideâ€based microcavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2320-2322.	0.8	8
48	Optical properties of single and multiâ€layer InGaN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1883-1885.	0.8	5
49	Fine tuning of quantum-dot pillar microcavities by focused ion beam milling. Applied Physics Letters, 2008, 92, .	1.5	19
50	Optical Characterisation of Low-Temperature Grown ZnO Nanorods. AIP Conference Proceedings, 2007, , .	0.3	0
51	Photoluminescence dynamics of surface-related emission in VPE grown ZnO nanowires. AIP Conference Proceedings, 2007, , .	0.3	0
52	Two-step growth of InGaN quantum dots and application to light emitters. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2407-2410.	0.8	4
53	On the way to InGaN quantum dots embedded into monolithic nitride cavities. Physica Status Solidi (B): Basic Research, 2007, 244, 1806-1809.	0.7	3
54	Coherent control of polariton modes in pulse-transmission and four-wave-mixing experiments. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1135-1138.	0.8	1

#	Article	IF	Citations
55	Growth and characterization of self-assembled CdSe quantum dots in MgS barriers. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 767-770.	0.8	7
56	Coherently controlled polaritonic four-wave-mixing polarization in a ZnSe/ZnSSe heterostructure. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2449-2452.	0.8	0
57	CdSe/ZnSe quantum dots coupled to modes of monolithic II-VI pillar microcavities: tunability and Purcell effect. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3680-3684.	0.8	2
58	Optical properties of single InGaN quantum dots up to 150 K. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3864-3868.	0.8	4
59	A novel approach for the growth of InGaN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3955-3958.	0.8	14
60	Crack free monolithic nitride vertical-cavity surface-emitting laser structures and pillar microcavities. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1749-1753.	0.8	2
61	Efficient coupling into confined optical modes of ZnSe-based pillar microcavities. Physica Status Solidi (B): Basic Research, 2006, 243, 844-848.	0.7	3
62	Coherent control of excitonic excitations in II–VI quantum wells. Physica Status Solidi (B): Basic Research, 2006, 243, 813-818.	0.7	1
63	Micro-photoluminescence studies of InGaN/GaN quantum dots up to 150 K. Physica Status Solidi (B): Basic Research, 2006, 243, 1661-1664.	0.7	27
64	Coherent control of exciton–biexciton beats: direction selectivity of four-wave-mixing signals in experiment and microscopic theory. Physica Status Solidi (B): Basic Research, 2006, 243, 2410-2413.	0.7	1
65	Enhanced spontaneous emission of CdSe quantum dots in monolithic II-VI pillar microcavities. Applied Physics Letters, 2006, 89, 091107.	1.5	22
66	Resonant modes in monolithic nitride pillar microcavities. European Physical Journal B, 2005, 48, 291-294.	0.6	20
67	ZnSe-based laser diodes: New approaches. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1098-1105.	0.8	17
68	Microphotoluminescence of strongly localized states in InGaN/GaN layers - emission of quantum dots?. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2744-2747.	0.8	1
69	Temperature Dependence of the Dephasing of Excitonic and Biexcitonic Polarization in a ZnSe Single Quantum Well. AIP Conference Proceedings, 2005, , .	0.3	0
70	Coherent control of the exciton-biexciton system demonstrated in four-wave-mixing experiments. AIP Conference Proceedings, 2005, , .	0.3	0
71	Epitaxal growth of InGaN quantum dots grown by MOVPE: Effect of capping process on the structural and optical properties. Materials Research Society Symposia Proceedings, 2005, 892, 178.	0.1	1
72	Microphotoluminescence Studies on Single GaN Nanocolumns. Materials Research Society Symposia Proceedings, 2005, 892, 730.	0.1	0

#	Article	IF	CITATIONS
73	Micro-photoluminescence studies of excitonic and multiexcitonic states of quantum dot-like localization centers in InGaN/GaN structures. Materials Research Society Symposia Proceedings, 2004, 831, 534.	0.1	0
74	Light-polarization and intensity dependence of higher-order nonlinearities in excitonic FWM signals. European Physical Journal B, 2004, 42, 175-180.	0.6	13
75	Green monolithic II–VI vertical-cavity surface-emitting laser operating at room temperature. Physica Status Solidi (B): Basic Research, 2004, 241, 731-738.	0.7	32
76	Dephasing of excitonic and biexcitonic polarization in a ZnSe single-quantum well. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 843-846.	0.8	0
77	Investigation of Green Emitting Monolithic II-VI Vertical Cavity Surface Emitting Laser. Materials Research Society Symposia Proceedings, 2002, 722, 471.	0.1	1
78	Studies on Carbon as Alternative P-Type Dopant for Gallium Nitride. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 526-531.	1.0	8
79	Studies on Carbon as Alternative P-Type Dopant for Gallium Nitride. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	2
80	Nonlinear Dynamics of Optical Switching Fronts in CdS. Physica Status Solidi (B): Basic Research, 1995, 187, 631-648.	0.7	2
81	Impurityâ€related dynamical optical switching in CdS. Physica Status Solidi (B): Basic Research, 1995, 188, 843-861.	0.7	3
82	Polariton Propagation in Shallow-Confinement Heterostructures. , 0, , .		0
83	Freeâ€Standing ZnSeâ€Based Microdisk Resonators: Influence of Edge Roughness on the Optical Quality and Reducing Degradation with Supported Geometry. Physica Status Solidi (B): Basic Research, 0, , 2100249.	0.7	0